摘要
设{Φn(z)}n"=0是首一复正交多项式序列,其中Φn的次数为n,n≥1,且Φn的零点zn,j,j=1,2,…,n,满足|zn,j|<1.本文讨论{Φn(z)}n"=0的正交性,某个比值的有界性和条件|zn,j|<1,j=1,2,…,n之间的联系.
Let {φn(z) }n∞0 be a series of monic complex polynomials with deg φn = n , such that zn,j ,j = 1,2,--. ,n ,the zeros ofφn ,for each n ≥1, satisfy |z,,j | 〈 1 . We es- tablish the relationship between the orthogonality of such a series, the boundness of a cer- tain ratio and the condition | znj | 〈 1 ,j = 1,2,..-,n.
出处
《南华大学学报(自然科学版)》
2011年第2期52-54,共3页
Journal of University of South China:Science and Technology
关键词
复多项式
正交
正波雷尔测度
complex polynomials
orthogonality
positive Borel measure