期刊文献+

多项式的正交性与其零点有界性的一个注记

A Note on the Boundness of Zeros and Orthogonality
下载PDF
导出
摘要 设{Φn(z)}n"=0是首一复正交多项式序列,其中Φn的次数为n,n≥1,且Φn的零点zn,j,j=1,2,…,n,满足|zn,j|<1.本文讨论{Φn(z)}n"=0的正交性,某个比值的有界性和条件|zn,j|<1,j=1,2,…,n之间的联系. Let {φn(z) }n∞0 be a series of monic complex polynomials with deg φn = n , such that zn,j ,j = 1,2,--. ,n ,the zeros ofφn ,for each n ≥1, satisfy |z,,j | 〈 1 . We es- tablish the relationship between the orthogonality of such a series, the boundness of a cer- tain ratio and the condition | znj | 〈 1 ,j = 1,2,..-,n.
出处 《南华大学学报(自然科学版)》 2011年第2期52-54,共3页 Journal of University of South China:Science and Technology
关键词 复多项式 正交 正波雷尔测度 complex polynomials orthogonality positive Borel measure
  • 相关文献

参考文献7

  • 1Alfaro M,Marcellan F,Pefra A,et al. When do linear combinations of orthogonal polynomials yield new sequences of arthogonal polynomials? [ J ]. Journal of Computational and Applied Mathematics ,2010,233 (6) : 1446-1452.
  • 2Drive K. A note on the interlacing of zeros and orthogonality [ J ]. J. Approx. Theory, 2009 ( 161 ) : 508-510.
  • 3Erdelyi T, Nevai P, Zhang J, et al. A simple proof of "Favard' s theorem" on the unit circle [ J ]. Atti Sem. Mat. Fis. Univ. , 1991 ( 39 ) : 551-556.
  • 4Gemnimus Y L. Polynomials orthogonal on a circle and their applications[ J ]. Amer. Math. Soc. Transl. ,1954 (104) :79-83.
  • 5Geronimus Ya L. Orthogonal polynomials [ M ]. New York: Consultants Bureau, 1961.
  • 6Jones W B, Njastad O, Thron W J. Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle [ J ]. Bull. London Math. Soc. , 1989 ( 21 ) : 113-152.
  • 7周建荣,黄民海,王红勇.两类高斯超几何多项式零点的渐近分布[J].中山大学学报(自然科学版),2011,50(2):28-30. 被引量:2

二级参考文献10

  • 1DRIVER K, JORDAAN K. Separation theorems for the zeros of certain hypergeometric polynomials [ J ]. J Comput Appl Math, 2007, 199:48 -55.
  • 2DRIVER K, JORDAAN K. P61ya frequency sequences and real zeros of some 3F2 polynomials [J]. J Math Anal Appl, 2007, 332 : 1045 - 1055.
  • 3MARTINEZ-GONZALEZ P, ZARZO A. Higher order hy- pergeometric Lauricella function and zero asymptotics of orthogonal polynomials [ J ]. J Comput Appl Math, 2010, 233 : 577 - 1583.
  • 4DOMINICI D, DRIVER K, JORDAAN K. Polynomial solutions of differential-difference equations [ J ] J Approx Theory,2011 163:41-48.
  • 5DRIVER K, DUREN P. Zeros of the hypergeometricpoly-nomials F( - n, b ;2b ;z) [ J ]. Indag Math ( New Ser), 2000, 11 : 43 -51.
  • 6DRIVER K, MOLLER M. Zeros of the hypergeometric polynomials F( - n, b ; - 2n ; z) [ J ]. J Approx Theory, 2001, 110:74-87.
  • 7BOGGS K, DUREN P. Zeros of hypergeometric functions [J]. Comput Methods Funct Theory, 2001, 1:275 - 287.
  • 8DUREN P, GUILLOU B J. Asymptotic properties of zeros of hypergeometric polynomials [ J ]. J Approx Theory, 2001, 111: 329-343.
  • 9MARDEN M. Geometry of polynomials [ M ]. American Mathematical Society, Providence, Rhode Island, 1996.
  • 10ANDREWS G, ASKEY R, ROY R. Special function, encyclopedia of mathematics and its applications [ M ]. Cambridge : Cambridge University Press, 1999.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部