期刊文献+

基于SIFT改进的图像拼接技术分析

Research on Improved Image Mosaic Approach Based on SIFT Descriptor
下载PDF
导出
摘要 为了保持较好的拼接性能同时提高运行速度,提出了一种基于尺度不变特征变换(SIFT)算法改进的图像拼接方法。首先通过图像配准方法介绍图像拼接的过程,其次详细描述同化核分割最小值(SUSAN)算法和基于SIFT描述子的特征匹配算法的处理流程,然后计算映射模型,其中包括获得配准图像和加权融合图像的方法,最后通过实验结果验证改进算法具有较高效率。 An automatic image mosaic approach based on improved SIFT algorithm is proposed for acquiring finer mosaic results and improving the speed of operation. First, the process of image mosaic is described by introducing the matching method, and based on the process of the SUSAN and character match approach depending on SIFT descriptor. Then the mapping modal is computed, including registered image acquisition and weighting fusion method. Finally, an experiment is proposed to prove the efficiency of the algorithm.
出处 《计算机与网络》 2011年第15期42-45,共4页 Computer & Network
关键词 图像拼接 SUSAN SIFT描述子 随机采样一致性算法(RANSAC) image mosaic SUSAN SIFT descriptor RANSAC
  • 相关文献

参考文献5

  • 1S M Smith, J M Brady. SUSAN-A New Approach to Low Level Image Processing[J]. Journal of Vision, 1997,23(1)45-78.
  • 2L Kitchen, A Rosenfeld. Gray-level corner detection[J]. Pattern Recognition, 1982, 95-102.
  • 3W Forstner, E Gulch. A fast operator for detection and precise location of distinct points, corners and centers of circular features[C]. Proceedings of the ISPRS Workshop on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, 1986,281-305.
  • 4C G Harris, M J Stephens. A Combined Corner and Edge Detector[C]. The 4th Alvey Vision Conference, Manchester, 1988.
  • 5D G Lowe. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2)91-110.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部