期刊文献+

卫星认知无线通信中频谱感知算法比较 被引量:3

Comparison of Spectrum Sensing Algorithms for Cognitive Radio Applications over Satellite Communication
下载PDF
导出
摘要 以实现卫星认知无线通信中频谱空穴探测为目的,列举并比较了目前用于频谱感知的六种算法。根据各个算法的自身特点指出其应用场合,分别分析了它们的优缺点,通过计算机仿真给出了能量检测、匹配滤波和压缩感知的检测性能,并指出压缩感知对硬件复杂度的要求最小,适合卫星认知无线通信。 To achieve spectrtum methodologies are introduced and holes detection in cognitive satellite communication, six spectrum sensing compared. According to their characteristics, the application of each method and the analysis of advantages and disadvantages are presented. Computer simulation results show the performances of energy detection, match filtering and compressed sensing. It is pointed out that compressed sensing is suitable for satellite communication because of minimum hardware complexity.
作者 陈鹏 徐烽
出处 《电讯技术》 北大核心 2011年第9期49-54,共6页 Telecommunication Engineering
关键词 认知无线电 卫星通信 频谱感知 能量检测 匹配滤波 压缩感知 cognitive radio satellite communication spectrum sensing energy detection match filtering compressive sensing
  • 相关文献

参考文献15

  • 1FCC. Spectrum Policy Task Force Report (ET docket no. 02 - 135) [ R ]. Washington DC, USA: FCC, 2002 : 1 - 73.
  • 2Haykin S. Cognitive Radio: Brain - Empowered Wireless Communication [ J ]. IEEE Journal on Selected Areas in Communications, 2005, 23 (2) : 201 - 220.
  • 3Yucek T, Arslan H. A Survey of Spectrum Sensing Algo- rithms for Cognitive Radio Applications[J]. IEEE Communi- cations Surveys and Tutorials, 2009,11 (l) : 116 - 130.
  • 4Urkowitz H. Energy detection of unknown deterministic signals [J]. Proceedings of the IEEE, 1967,55(4) :523 - 531.
  • 5Digham F F, Alouini M S, Simon M K. On the energy detec- tion of unknown signals over the fading channels [ C]//Pro- ceedings of 2003 IEEE International Conference on Communi- cations. San Francisco: IEEE, 2003 : 3575 - 3579.
  • 6孙洋.通信信号调制识别与处理[D].西安:中国空间技术研究院,2009.
  • 7Gardner W A. Exploitation of spectral redundancy in cyclo- stationary signals [ J ]. IEEE Signal Processing Magazine, 1991,8(2) : 14 - 36.
  • 8Pmakis J G.数字通信[M].4版.张力军,张宗橙,郑宝玉,等,译.北京:电子工业出版社,2003.
  • 9Donoho D L. Compressed Sensing [ J]. IEEE Transactions on Information Theory, 2006,52(4) : 1289 - 1306.
  • 10Candes E J. Compressive Sampling [ C ]//Proceedings of 2006 International Congress of Mathematicians. Madrid, Spain: IEEE, 2006 : 1433 - 1452.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献710

同被引文献26

  • 1余艳英,朱江,张盛峰.认知无线电系统中基于多标拍卖的信道分配机制[J].通信技术,2008(5):75-78. 被引量:6
  • 2梁千帆,陈建华.UHF频段卫星通信的现状与未来发展[J].中国新通信,2007,9(11):26-28. 被引量:10
  • 3Federal Communication Commission. Spectrum policy task force report[R]. Rep. ET Docket No.0.-155, Nov.2002.
  • 4MITOLA J Ⅲ, MAGUIRE G Q. Cognitive radio: making software radios more personal[J]. IEEE. Personal Communications, 1999,6(4) : 13-18.
  • 5HAYKIN S. Cognitive radio: brain-empowered wireless communication[J]. IEEE,Journal on SAC, 2005,23(2):201- 220.
  • 6GOLDSMITH A, JAFAR S A, MARIC I, et al. Breaking spectrum gridlock with cognitive radios-an information theoretic Perspective[J]. IEEE, Proceedings of the IEEE.2009, 97(5):894-914.
  • 7GASTPAR M. On capacity under receive and spatial spectrum-sharing constraints[J]. IEEE., Transactions on Information Theory, 2007,53(2):471-487.
  • 8WANG W, PENG T, WANG W. Optimal power control under interference temperature constraints in cognitive radio nerwork[C]. IEEE.,Wireless Communication and Networking Conference, 2007:116-120.
  • 9TADROUS J, SULTAN A, NAFIE M. Admission and power control for spectrum sharing cognitive radio network[J]. IEEE.,Transactions on Wireless Communications, 2011,10 (6): 1945-1955.
  • 10BAYHAN S, GUR G, ALAGOZ F. Satellite assisted spec- trum agility concept[C]. IEEE., Military Communications Conference, 2007 : 1-7.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部