期刊文献+

基于数据流聚类的动态信号分选框架 被引量:3

A Dynamic Frame of Signal Sorting Based on Data Stream Clustering
下载PDF
导出
摘要 为了解决雷达信号分选中准确性与实时性相矛盾的问题,提出了一种基于数据流聚类的动态信号分选框架。该框架分为在线和离线两部分,在线部分利用网格帧保存侦察数据的概要信息;离线部分通过网格聚类算法对网格帧进行聚类分选,并得到分选结果。仿真实验表明,该框架能够分选高密度复杂侦察数据流,对噪声不敏感,且无需先验知识支撑,能够较好地满足信号分选准确性和实时性的需要。 In order to solve the contradiction between the accuracy and the real-time in radar signal sorting, a dynamic signal sorting frame based on data stream clustering is proposed. The frame can be divided into two parts, or online part and offline part. In online part, the reconnaissance data is transformed and saved as grid frame. In offline part, the grid frame is sorted with the algorithm of grid-based clustering. Experimental results show that the proposed frame can sort the high density and complex reconnaissance data stream without any prior knowledge, and is not sensitive to the influence of noise. The requirement of accuracy and real-time in signal sorting can be satisfied with this frame.
出处 《电讯技术》 北大核心 2011年第9期65-68,共4页 Telecommunication Engineering
关键词 雷达信号分选 数据流 网格聚类 实时性 radar signal sorting data stream grid-based clustering real-time
  • 相关文献

参考文献5

二级参考文献13

  • 1陈志刚,罗春苗,邓晓衡.基于修正的M距离辐射源识别方法及计算机仿真[J].电子技术应用,2004,30(6):9-10. 被引量:5
  • 2张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875. 被引量:14
  • 3祝正威.雷达信号的聚类分选方法[J].电子对抗,2005(6):6-10. 被引量:33
  • 4MILOJEVIC D J,POPOVIC B M.Improved algorithm for deinterleaving of radar pulses[J].IEE Proc,F:Comm,Radar and Signal Processing,1992,139(1):98-104.
  • 5ROGERS J A V.ESM processor system for high pulse density radar environments[J].IEE Proc,F:Comm,Radar and Signal Process,1985,132(7):621-625.
  • 6ATA'A A W,ABDULLAH S N.Deinterleaving of radar signals and PRF identification algorithms[J].IET Radar,Sonar & Navigation,2007,1(5):340-347.
  • 7CRISTIANINI N,SHAWE-TAYLOR J.An introduction to support vector machines and other kernelbased learning methods[M].Cambridge,UK:Cambridge University Press,2000.
  • 8BEN-HUR A,HORN D,SIEGEL M H T,et al.Support vector clustering[J].Journal of Machine Learning Research,2001(2):125-137.
  • 9贾世楼.信息论理论基础[M].哈尔滨:哈尔滨工业大学出版社,2001.
  • 10Hassan H E.Joint deinterleaving / recognition of radar pulses,radar conference[C] // Pro.of the International,2003:177 -181.

共引文献71

同被引文献32

  • 1祝正威.雷达信号的聚类分选方法[J].电子对抗,2005(6):6-10. 被引量:33
  • 2李杨寰,初翠强,徐晖,周一宇.一种新的脉冲重复频率估计方法[J].电子信息对抗技术,2007,22(2):18-22. 被引量:8
  • 3Davies C L, Holland P. Automatic Processing for ESM [ J ]. IEE Proc F Commun Radar & Signal Process, 1982,4 ( 8 ) : 52-56.
  • 4Mardia H K. Adaptive Clustering for ESM [ J ]. lEE Colloquium on Signal Processing for ESM systems, 1988,62 (5) : 149-154.
  • 5Milojevie D J, Popovic B M. Improved Algorithm for the Deinterleaving Radar Pulses [ J ]. lEE Pro- ceedings, Part F: Radar and Signal Processing, 1992,139( 1 ) :98-104.
  • 6胡来招.平面变换用于复杂环境的信号处理[M].电子工业部29研究所科技成果汇编,1995.
  • 7Anant Ram, Ashish Sharma, Anand S Jalall. An Enhanced Density Based Spatial Clustering of Ap- plications with Noise [ J ]. IEEE International Ad-vance Computing Conference, 2009 (3): 1475-1478.
  • 8Shan Shimin. Research on data stream clustering based on grid and density [ D ]. Dalian University of Technology ,2006.
  • 9Aggarwal C C,Han J,Wang J, et al. A Framework Clustering Evolving Data Streams [ C ] // Proc. of the 29th VLDB Conference,2003 : 81-92.
  • 10AGGARWAL C C, HAN J, WANG J, et al. A frame work for projected clustering of high dimen- sional data streams [ C ] //Proc. of the 30th VLDB Conf, 2004 : 852-863.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部