期刊文献+

(s^r)×s^n正规部分因子设计折叠反转的性质 被引量:1

Some Properties of Foldover of Regular(s^r)×s^n Fractional Factorial Designs
下载PDF
导出
摘要 该文讨论了(s^r)×s^n正规部分因子设计折叠反转的问题,其中r(≥2)是一个整数,s是一个素数或素数幂.给出了(s^r)×s^n正规部分因子设计的折叠反转方案的一般结构,分别在未分区组和分区组的情形下给出了初始设计与扩大设计间的联系,把s水平正规部分因子设计的折叠反转的相关结果推广到(s^r)×s^n正规部分因子设计的情形. In this paper,the authors study the issue of foldover of regular(s^r)×s^n fractional factorial designs,where r(≥2) is an integer and s is a prime or prime power.A general decomposition structure of the foldover plan for a regular(s^r)×s^n fractional factorial design is obtained.The relationship between an initial design and its combined design are studied. This is done both for with and without consideration of the blocking factor.So the authors generalize the results about foldover from s^n regular fractional factorial designs to the case of (s^r)×s^n regular fractional.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第4期978-982,共5页 Acta Mathematica Scientia
基金 国家自然科学基金(10671080) 教育部新世纪优秀人才支持计划(06-672) 高等学校博士学科点专项科研基金(20090144110002) 华中师范大学博士研究生科研自主基金资助
关键词 正规部分因子设计 字长型 最优折叠反转 类型为0的最小混杂准则 Minimum aberration criterion of type 0 Optimal foldover Regular fractional factorial design Word length pattern
  • 相关文献

参考文献11

  • 1Box G E P, Hunter J S. 2^k-p fractional factorial designs. Thchnometrics, 1961, 3: 311-351, 449- 458.
  • 2Box G E P, Hunter W G, Hunter J S. Statistics for Experiments. New York: Wiley, 1978.
  • 3Montgomery D C. Design and Analysis of Experiments, 5th ed. New York: Wiley, 2001.
  • 4Neter J, Kutner M H, Nachtsheim C J, Wasserman W. Applied Linear Statistical Models, 4th ed. Chicago: Richard D Irwin, 1996.
  • 5Wu C F J, Hamada M S. Experiments Planning, Analysis, and Parameter Design Optimization. New York: Wiley, 2000.
  • 6Montgomery D C, Runger G C. Foldovers of 2^k-p resolution IV experimental designs. J Qual Technol, 1996, 28:446- 450.
  • 7Li W, Lin D K J. Optimal foldover plans for two-level fractional factorial designs. Technometrics, 2003, 45:142- 149.
  • 8Li W, Lin D K J, Ye K Q. Optimal foldover plans for two-level nonregular orthogonal designs. Techno- metrics, 2003, 45:347-351.
  • 9Fang K T, Lin D K J, Qin H. A note on optimal foldover design. Statist Probab Lett, 2003, 62:245- 250.
  • 10Ye K, Li W. Some properties for blocked and unblocked foldovers of 2^k-p designs. Statist Sinica, 2003, 13:403 -408.

同被引文献18

  • 1Box G E P,Hunter J S. 2k-p fractional factorial designs[J].Thchnometrics,1961.311351,449-458.
  • 2Box G E P,Hunter W G,Hunter J S. Statistics for Experiments[M].New York:wiley,1978.
  • 3Montgomery D C. Design and Analysis of Experiments (5th ed)[M].New York:wiley,2001.
  • 4Neter J,Kutner M H,Nachtsheim C J,Wasserman W. Applied Linear Statistical Models (4th ed)[M].Chicago:Richard D Irwin,1996.
  • 5Wu C F J,Hamada M S. Experiments Planning Analysis,and Parameter Design Optimization[M].New York:wiley,2000.
  • 6Montgomery D C,Runger G C. Foldovers of 2k-p resolution IV experimental designs[J].Journal of Quality Technology,1996.446-450.
  • 7Li W,Lin D K J. Optimal foldover plans for two-level fractional factorial designs[J].Technometrics,2003,(2):142-149.doi:10.1198/004017003188618779.
  • 8Li W,Lin D K J,Ye K Q. Optimal foldover plans for two-level nonregular orthogonal designs[J].Technometrics,2003,(4):347-351.doi:10.1198/004017003000000177.
  • 9Fang K T,Lin D K J,Qin H. A note on optimal foldover design[J].Statistics & Probability Letters,2003.245250.
  • 10Ye K,Li W. Some properties for blocked and unblocked foldovers of 2k-p designs[J].Statistica Sinica,2003.403-408.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部