期刊文献+

全纯向量丛与Ward孤子

Holomorphic Vector Bundles and Ward Solitons
下载PDF
导出
摘要 Ward利用亚纯标架具体给出了有限能量的1-uniton对应的全纯向量丛,该向量丛的底空间为有理直纹面.Ward所用的亚纯标架的奇异结构与1-uniton的广义解的奇异结构相对应.该文推广了Ward的方法,具体给出了一些Ward孤子对应的全纯向量丛,这些Ward孤子的广义解仅具有单极点或仅具有一个二阶极点. The holomorphic vector bundle on the rational ruled surface corresponding to the finite-action 1-uniton was explicitly described by Ward in terms of a meromorphic framing, which has a singularity structure corresponding to that of the 1-uniton extended solution.In this paper,the author generalizes Ward's method to give explicitly the holomorphic bundle corresponding to all Ward solitons whose extended solutions have only simple poles and some Ward solitons whose extended solutions have a second-order pole.
作者 朱秀娟
出处 《数学物理学报(A辑)》 CSCD 北大核心 2011年第4期1022-1035,共14页 Acta Mathematica Scientia
基金 国家自然科学基金(10671171) 江苏省自然科学基金(10KJD110006)资助
关键词 Ward孤子 广义解 亚纯标架 有理直纹面 极点数据 Ward solitons Extended solutions Meromorphic framing Rational ruled surface Pole data
  • 相关文献

参考文献14

  • 1Anand C K. Uniton bundles. Comm Anal Geom, 1995, 3:371-419.
  • 2Warrant F. Le Deploiment Mondial de la R&D industrielle, bruxelles, commission Europeennes-Fast, December,1991.
  • 3Anand C K. Ward's solitons II: exact solutions. Canad J Math, 1998, 50:1119-1137.
  • 4Dai B, Terng C L. Backlund transformations, Ward solitons, and unitons. J Diff Geom, 2007, 75:57-108.
  • 5Dai B, Terng C L, Uhlenbeck K. On the space-time monopole equation. Surv Diff Geom, 2006, 10:1-30.
  • 6Hurtubise J. Instantons and jumping lines. Commun Math Phys, 1986, 105:107-122.
  • 7Ioannidou T. Soliton solutions and nontrivial scattering in an integrable chiral model in (2 + 1) dimensions. J Math Phys, 1996, 37:3422-3441.
  • 8Ioannidou T, Ward R S. Conserved quantities for integrable chiral model in 2 + 1 dimensions. Phys Lett A, 1995, 208:209-213.
  • 9Uhlenbeck K. Harmonic maps into Lie groups (classical solutions of the chiral model). J Diff Geom, 1989, 30:1-50.
  • 10Ward R S. Soliton solutions in an integrable chiral model in 2 + 1 dimensions. J Math Phys, 1988, 29: 386- 389.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部