期刊文献+

基于视频技术的交通流量预测 被引量:4

Traffic flow prediction based on video technology
下载PDF
导出
摘要 城市交通拥堵是一个世界性的难题,至今还没有特别有效的解决方法。目前正在研究、实施的智能运输交通系统(ITS),主要是通过对交通流量的合理调控,来优化路网的利用率。基于各路口的视频摄像系统,通过采集卡将获取的图像转化为实际的车流量信息。根据人工神经网络的理论建立BP算法的流量预测模型,用实际测得的流量信息,在MATLAB环境下对模型进行训练。然后再利用训练好的模型来预测路口将来几个时段的交通流量。如果预测到某方向的流量将很大,可以通过实时修改信号灯的软件参数,延长该方向的绿灯时间,化解可能出现的交通拥堵。 Urban traffic jam is a worldwide problem, which has not yet been solved effectively. The world's major developed countries are studying the implementation of Intelligent Transport Systems (ITS), which mainly optimizes network utilization rate through the rational control of traffic flow. the images will trans- fered into the actual traffic flow information based on the intersection of video camera system through the acquisition card. Traffic prediction model of BP algorithm is established according to the theory of artificial neural network. The model is trained through using the actual measured flow information in the MATLAB environment. Ttraffic flow of several periods is predicted with the trained model. If the predicted dates are larger, the the software parameters of signal lamp in real time will be modified to extend the time of green light and resolve the traffic problems.
出处 《黑龙江工程学院学报》 CAS 2011年第3期53-55,60,共4页 Journal of Heilongjiang Institute of Technology
基金 黑龙江省教育厅科学技术研究资助项目(11551412)
关键词 视频技术 BP神经网络 智能交通系统 流量预测 路网拥堵 video technology BP neural network intelligent transportation system forecast traffic flow road net congestion
  • 相关文献

参考文献7

二级参考文献16

  • 1杨兆升.论智能运输系统[J].中国公路学报,1995,8(4):102-110. 被引量:19
  • 2楼顺天.基于MATLAB的系统分析与设计—神经网络[M].西安:西安电子科技大学出版社,1999..
  • 3王炜.交通工程学[M].南京:东南大学出版社,2002.43-79.
  • 4Brian L S,Michael J D.Short-term traffic flow predication:Neural Network Approach.Transportation Research Record 1453.Washington.D.C.TRB.1993
  • 5Nagui M Rouphail,Navaneet Dutt. Estimation travel time distributions for signalized links: model development and potential ITS applications. Proceedings of the 1995 Annual Meeting of ITS America. 1995
  • 6王伟,人工神经网络原理,1995年
  • 7Haibo Chert , Susan Grant - Muller. Use of sequential learning for short - term traffic flow forecasting [ J ]. Transportation Research,2001, C9 (5) :319- 336.
  • 8Farnad Laleh,Ahmad R Mirzai. A new transportation forecasting model based on sinusoidal neural network[J]. Tehran,2001.
  • 9冯旭东,陈方.遗传算法在辅助设计神经网络中的应用[J].电脑与信息技术,1997,5(4):13-16. 被引量:4
  • 10刘智勇,吴今培,李秀平,万百五.城市交通大系统递阶模糊神经网络控制[J].信息与控制,1997,26(6):441-448. 被引量:40

共引文献43

同被引文献18

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部