期刊文献+

基于知识与规则的红树林遥感信息提取 被引量:11

Remote sensing information extraction of mangrove based on knowledge and rules
下载PDF
导出
摘要 针对难以将红树林同陆地植被,尤其是同水体与陆地植被混合像元有效识别的现象,结合TM影像提取了能有效反映红树林湿地特征的绿度指数和湿度指数,同其他常用的NDVI、TM3/TM5、TM5/TM4等指数相比:绿度指数和湿度指数更能有效地提高红树林同陆地植被,尤其是同水体与植被混合像元的可分性.采用知识与规则方法提取红树林遥感信息,与其他学者常采用的分类特征及分类方法相比,识别精度有明显提高,Kappa系数提高0.10,错分率降低16.1个百分点. The classification accuracy of mangrove is always low due to the similarity of spectra between mangrove and land vegetation, especially water-vegetation mixed pixels. Greenness index and wetness index were extracted based on TM imagery, which can effectively reflect the wetland characteristics of mangrove. The greenness index and wetness index can significantly improve the separability between mangrove and water-vegetation mixed pixels by comparison with NDVI, TM3/TMS, TMS/TM4, which always were employed by other researchers. Knowledge and rules method can significantly increase the classification accuracy of mangrove, compared with conventional classifi- cation features and method employed by other researchers. And the Kappa coefficient increased 0. 10 while commis- sion error of mangrove class decreased 16. 1 percent by using decision tree method.
作者 张雪红
出处 《南京信息工程大学学报(自然科学版)》 CAS 2011年第4期341-345,共5页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(40971186)
关键词 红树林 绿度 湿度 知识与规则 K-T变换 mangrove greenness wetness knowledge and rules K-T transformation
  • 相关文献

参考文献27

  • 1Lorenzo R,Jesus B R,Jara R B. Assessment of mangrove forest deterioration in Zamboanga Peninsula, Philippines, using Landsat MSS data [ C ]//Proceedings of the 13th International Symposium on Remote Sensing of the Envi- ronment, 1979 : 1737-1745.
  • 2Girl C ,Pengra B ,Zhu Z ,et al. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India u- sing multi-temporal satellite data from 1973 to 2000 [J]. Estnarine, Coastal and Shelf Science,2007,73 ( 1/2 ) : 91 - 100.
  • 3Chaudhury M U. Digital analysis of remote sensing data for monitoring the ecological status of the mangrove for- ests of Sunderbans in Bangladesh [ C ]//Proceedings of the 23rd International Symposium on Remote Sensing of the Environment, 1990:493-497.
  • 4Vibnlsresth S, Downreang D, Ratanasermpong S, et al. Mangrove forest zonation by using high resolution satellite data [ C] //Proceedings of the 11th Asian Conference on Remote Sensing, 1990 : 1-6.
  • 5Loo M G K, Lim T M, Chou L M. Land use changes of a recreational island as observed by satellite imagery [ C ]// Third ASEAN Science and Technology Week Conference Proceedings, 1992:401405.
  • 6Long B G., Skewes T D. GIS and remote sensing improves mangrove mapping [ C ]//Proceedings of the 7th Australasian Remote Sensing Conference, 1994:545-550.
  • 7Aschbacher J,Ofren R S,Delsol J P,et al. An integrated comparative approach to mangrove vegetation mapping using remote sensing and GIS technologies:Preliminary resuits [J]. Hydrobiologia, 1995,295 ( 1/2/3 ) : 285-294.
  • 8Green E P,Clark C D,Mumby P J, et al. Remote sensing techniques for mangrove mapping [ J I. International Journal of Remote Sensing, 1998,19(5) :935-956.
  • 9Andriamparany R, Fromard F. Dynamics of mangrove forests in the Mangoky River della, Madagascar, under the influence of natural and human factors [J]. Forest Ecology and Management,2010,259 (6) : 1161-1169.
  • 10Blasco F,Aizpuru M, Gers C. Depletion of the mangroves of Continental Asia [ J 1- Wetlands Ecology and Management,2001,9(3 ) :255-266.

二级参考文献29

  • 1王宏勇,董广军,唐汗松,朱朝杰.海岸带高光谱影像分类技术研究[J].海洋测绘,2004,24(6):20-23. 被引量:7
  • 2Laura L Hess,John M Melack, Solange Filoso, et al. Delineation of Inundated Area and Vegetation Along the Amazon Floodplain with the SIR-C Synthetic Aperture Radar [ J ]. Transactions on Geosicence and Remote Sense 1995,33 ( 4 ):896 - 904.
  • 3Ferrazzoli P,Paloscia S,Pampealoni P,et al. The Potential of Multifrequency Polarimetric SAR in Assessing Agircultural and Arboreous Biomass [ J ]. IEEE Transactions on Geosicnce and Remote Sense, 1997,35 ( 1 ) :5 - 17.
  • 4王宪礼,李秀珍.湿地的国内外研究进展[J].生态学杂志,1997,16(1):58-62. 被引量:120
  • 5Boochs F,Kupfer G,Docter K,et al.Red Edge Shape as Vitality Indicator for Plants[J].Int.J.Remote Sensing,1990,11(10):1741-1753.
  • 6Demuro M,Chisholm L.Assessment of Hyperion for Characterizing Mangrove Communities[A].Proceedings of the AVIRIS 2003 Workshop[C].NASA Jet Propulsion Laboratory,Pasadena,California,USA,2003.
  • 7Swain P H,Hauska H.The Decision Tree Classifier:Design and Potential[J].IEEE Trans.Geosci.Remote Sensing,1977,GE-15:142-147.
  • 8Friedl M A,Brodeley C E.Decision Tree Classification of Land Cover from Remotely Sensed Data[J].Remote Sensing of Environment,1997,61:399-409.
  • 9Robert A Schowengerdt.Remote Sensing Models and Methods for Image Processing[M].Academic Press,1997.
  • 10Hansen M,Dubayah R,Defries R.Classification Trees:An Alternative to Traditional Land Cover Classifiers[J].Int.J.Remote Sensing,1996,17(5):1075-1081.

共引文献73

同被引文献190

引证文献11

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部