期刊文献+

稀疏贝叶斯相关向量机的模拟电路故障诊断 被引量:3

Analogous Circuit Fault Diagnosis on Sparse Bayesian Relevant Vector Machine
下载PDF
导出
摘要 模拟电路故障诊断受制于传统的机器学习方法需要人为设定参数,分类效果依赖于参数设定是否成功,无法进行在线诊断。为此,提出一种基于稀疏贝叶斯相关向量机理论的模拟电路故障诊断模型,改进权值更新算法,设定阈值提前剔除非相关权值,减少算法运行时间,加快权值更新速度。在贝叶斯框架下对分类函数的权重进行推断,并得到各分类的后验概率,从而判断分类结果的置信度,辅助诊断决策。仿真结果表明,与支持向量机相比,该模型在精度相当的情况下,需要的相关向量更少,更具稀疏性和泛化性,分类时效性更高,适合模拟电路的在线检测。 Analogous circuit fault diagnosis is influenced by parameter selection of classical machine learning approach,the result of classification relies on parameter whether suitable or not,that is unable to carry on diagnosis online.This paper proposes an analogous circuit fault diagnosis model based on Relevant Vector Machine(RVM) from the sparse Bayesian theory,and improves the weight renewal algorithm.The hypothesis threshold value picks out unrelated weights before they approach infinity,this can reduce the algorithm running time and speed up the weight refresh.RVM can infer the discriminant function under the Bayesian framework.Moreover,it can obtain posterior probability of each classification,thus can judge the degree of classification result confidence,assist diagnosis decision-making.The result indicates that RVM need less relevance vectors than support vector machine with comparative default accuracy,sparser and generalizing.It suits to online fault detection.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第18期7-9,共3页 Computer Engineering
基金 国家"973"计划基金资助项目(61355020301)
关键词 相关向量机 稀疏贝叶斯 模拟电路 故障诊断 最大后验概率 Relevant Vector Machine(RVM) sparse Bayes analogous circuit fault diagnosis maximum posterior probability
  • 相关文献

参考文献6

  • 1Tipping M E. The Relevance Vector Machine[C]//Proc. of Conference on Neural Information Processing Systems. [S. l.]: MIT Press, 2000: 652-658.
  • 2Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine[J]. Journal of Machine Learning Research, 2001, 3(1): 211-244.
  • 3Tipping M E. Bayesian Inference: An Introduction to Principles and Practice in Machine Learning[C]//Proc. of Conference on Machine Learning. [S. l.]: Springer, 2004: 41-62.
  • 4Foody G M. RVM-based Multi-class Classification of Remotely Sensed Data[J]. International Journal of Remote Sensing, 2008, 29(6): 1817-1823.
  • 5张磊,刘建伟,徐翔,罗雄麟.基于相关向量机的神经活动分类及译码[J].计算机工程,2009,35(20):197-198. 被引量:3
  • 6王安娜,刘俊芳,袁文静,王勤万.基于不完全BT-SVMs分类的模拟电路故障诊断方法[J].系统仿真学报,2008,20(4):867-870. 被引量:8

二级参考文献13

  • 1赵晖,荣莉莉,李晓.一种设计层次支持向量机多类分类器的新方法[J].计算机应用研究,2006,23(6):34-37. 被引量:20
  • 2Prabhat F W, Donoghue J P, Black M J, et al. Inferring Attentional State and Kinematics from Motor Cortical Firing Rates[C]//Proc. of the 27th IEEE Engineering in Medicine and Biology Conference. Shanghai, China: [s. n.], 2005.
  • 3Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
  • 4Vapnik V N. The Nature of Statistical Learning[M]. New York, USA Springer-Verlag, 1995.
  • 5Lawrence N D, Seeger M. Fast Sparse Gaussian Process Methods: The Informative Vector Machine[C]//Proc. of Workshop on Neural Information Processing Systems. [S. l.]: IEEE Press, 2003: 609- 616.
  • 6Feng Li, Peng Yung Woo. Fault detection for Linear analog IC-the method of short-circuit admittance parameters [J]. IEEE Transactions on Circuits and System Ⅰ: Fundamental Theory and Applications (S0278-0070), 2002, 49(1): 105-108.
  • 7VAPNIK V. The Nature of Statistical Learning [M]. New York: Spring Verlng, 1995.
  • 8HSU C-W, LIN C-J. A comparison of methods for multi-class support vervector machines [J]. IEEE Transaction on Neural Network (S1045-9227), 2002, 13(2): 415-425.
  • 9PLATTJC, CRISTIANININ, SHAWE-YAYLORJ. Larg Margin DAGs for multiclass classfication Processing classification [C]// Advances in Neural information Systems, 2000. New York: MIT Press,2000: 547-553.
  • 10BEILEYA. Class-dependent features and multicategory classfication [D/OL]. (2004-06) [2006-10]. navy..mil/caf/papers/baileypbd.pdf,2001.

共引文献9

同被引文献22

  • 1ZENG S K, MICHAEL G P, WU J. Status and perspectives of prognostics and health management technology[J]. 航空学报,2005,26(5):626-632.
  • 2杨景辉,康建设.机械设备故障规律与维修策略研究[J].科学技术与工程,2007,7(16):4143-4146. 被引量:23
  • 3Jardine A,Lin D,Banjevic D.A review on machinery prognostic diagnostics and implementing condition-based maintenance[J].Mechanical Systems and Signal Processing,2005,20(1):1483-1510.
  • 4Deh W.Time series prediction for machining errors using support vector regression[C]//Proc of the 1st International Conference on Intelligent Networks and Intelligent Systems,2008:27-30.
  • 5高保禄.大型复杂机电设备分布式故障诊断方法研究[J].太原:太原理工大学,2010.
  • 6Jardine A, Lin D, Banjevic D. A review on machinery prognostic diagnostics and implementing condition-based maintenance EJ~ ~ Mechanical Systems and Signal Processing, 2005, 20 (1): 1483 - 1510.
  • 7Wang W Q, Uolnaraghi M F, Ismail F. Prognosis of machine health condition using neuro-fuzzy systems ~J~. Mechanical Sys- tems and Signal Processing, 2004, 18 (4): 813 -831.
  • 8Deh W. Time series prediction for machining errors using support vector regression ~A] . Proc. of the 1st International Conference on Intelligent Networks and Intelligent Systems [C] . 2008:27 - 30.
  • 9代京,张平,李行善,于劲松.综合运载器健康管理健康评估技术研究[J].宇航学报,2009,30(4):1711-1721. 被引量:24
  • 10杨昌昊,胡小建,竺长安.从故障树到故障贝叶斯网映射的故障诊断方法[J].仪器仪表学报,2009,30(7):1481-1486. 被引量:41

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部