期刊文献+

改进粒子群优化算法在服务组合中的应用 被引量:7

Application of Improved Particle Swarm Optimization Algorithm in Service Composition
下载PDF
导出
摘要 针对标准粒子群优化(PSO)算法存在收敛速度慢、容易陷入局部最优的问题,提出一个改进的PSO算法,该算法设计一种新的惯性权重,在粒子搜索的不同阶段采用不同的计算公式计算惯性权重,并引入自适应变异策略和线性变化的学习因子。实验结果表明,该算法的收敛性等性能比基本粒子群算法有明显提高,能较好地解决非线性问题。 As the Particle Swarm Optimization(PSO) algorithm has some shortcomings of slow convergence and easy to fall into the local extreme value,this paper presents a improved particle swarm optimization with a new inertia weight.In different stages of the algorithm run,a corresponding formula is used to calculate the inertia weight.In Addition,adaptive mutation and linear-changed learning factor are introduced.The relational test simulation experiment is carried out.Experimental results show that the improved algorithm is feasible and efficient,it can solve norlinear problem.
作者 胡珀 娄渊胜
出处 《计算机工程》 CAS CSCD 北大核心 2011年第17期130-132,共3页 Computer Engineering
关键词 粒子群优化 惯性权重 自适应变异 服务组合优化 Particle Swarm Optimization(PSO) inertia weight adaptive mutation service composition optimization
  • 相关文献

参考文献5

  • 1Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]//Proceedings of the 16th International Symposium on Micro and Human Machine Science. Piscataway, USA: [s. n.], 1995: 39-43.
  • 2Shi Y, Eberthart R C. A Modified Particle Swarm Optimizer[C]// Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway, USA: IEEE Press, 1998: 69-73.
  • 3俞靓亮,王万良,介婧.基于混合粒子群优化算法的旅行商问题求解[J].计算机工程,2010,36(11):183-184. 被引量:11
  • 4Janson S, Middendorf M. A Hierarchical Particle Swarm Optimizer and Its Adaptive Variant[J]. IEEE Trans. on Systems, Man, and Cyberneticss, 2005, 35(6): 1272-1282.
  • 5Fan Xiaoqin, Jiang Changjun, Fang Xianwen. An Efficient Approach to Web Service Selection[C]//Lecture Notes in Computer Science. Berlin, Gemary: Springer, 2009: 271-280.

二级参考文献5

共引文献10

同被引文献62

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部