期刊文献+

基于特征熵相关度差异的KNN算法 被引量:5

KNN Algorithm Based on Feature Entropy Correlation Difference
下载PDF
导出
摘要 传统K最近邻(KNN)法在进行样本分类时容易产生无法判断或判断错误的问题。为此,将特征熵与KNN相结合,提出一种新的分类算法(FECD-KNN)。该算法采用熵作为类相关度,以其差异值计算样本距离。用熵理论规约分类相关度,并根据相关度间的差异值衡量特征对分类的影响程度,从而建立距离测度与类别间的内在联系。仿真实验结果表明,与KNN及Entropy-KNN法相比,FECD-KNN在保持效率的情况下,能够提高分类准确性。 The paper ameliorates the method that combined K-Nearest Neighbor(KNN) with entropy,a new improved algorithm that adopting entropy as correlation and taking differences values to calculate distance is proposed,which calls FECD-KNN,based on the research that KNN tested sample in misjudgment and error easily.The impacted algorithm combines information entropy theory used to statute correlation,measures strength of impact on the classification according to difference of correlation,and establishes the intrinsic relation between the distance and class.The contrast simulation experiment shows that,compared with KNN and Entropy-KNN,the impacted algorithm adopting the degree of correlation to optimize distance raised the rate of accuracy enormously in classification,meanwhile it also maintains efficiency of classification.
作者 周靖 刘晋胜
出处 《计算机工程》 CAS CSCD 北大核心 2011年第17期146-148,共3页 Computer Engineering
关键词 K最近邻算法 相关度 差异 K-Nearest Neighbor(KNN) algorithm entropy correlation difference
  • 相关文献

参考文献4

  • 1Chin K K. Support Vector Machines Applied to Speech Pattem Classification[D]. Cambridge, UK: Cambridge University, 1998.
  • 2Klaus R M, Sebastian M, Gunnar R, et al. An Introduction to Kernel-based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201.
  • 3Wu Xindong, Kumar V, Quinlan J R, et al. Top 10 Algorithms in Data Mining[J]. Knowledge and Information Systems, 2008, 14(1): 1-37.
  • 4王洪彬,刘晓洁.基于KNN的不良文本过滤方法[J].计算机工程,2009,35(24):69-71. 被引量:7

二级参考文献8

共引文献6

同被引文献34

  • 1强保华,吴中福,余建桥,陈凌,吴开贵.基于属性信息熵的实体匹配方法研究[J].计算机工程,2005,31(21):31-33. 被引量:5
  • 2杨立,左春,王裕国.基于语义距离的K-最近邻分类方法[J].软件学报,2005,16(12):2054-2062. 被引量:31
  • 3王煜,王正欧,白石.用于文本分类的改进KNN算法[J].中文信息学报,2007,21(3):76-82. 被引量:15
  • 4HanJiawei MichelineKamber.数据挖掘概念与技术[M].北京:机械工业出版社,2004..
  • 5Cover T M, Hart P E, Nearest neighbor pattern classification [J]. IEEE Transaction on Information Theory, 1967, 13 (1) : 21-27.
  • 6Wu X, Kumar V, Quinlan J R, et al. Top 10 algorithms in data mining [J]. Knowledge and Information Systems, 2008, 14 (1): 1-37.
  • 7Zhang Shichao. ShelFneighbor method ant its application in missing data imputation [J/OL]. Applied Intelligenc [2010-02-20] . http: // www. Springerlinlc com. Cntent/666244u6 72v617v/.
  • 8ZHANG Shichao. Parimputation: From imputation and null- imputation to partially imputation [J]. IEEE Intelligent Infor- maticsBulletin, 2008, 9 (1): 32-38.
  • 9Kira K, Rendell L. A practical approach to feature selection [C] //Proc of the 9th Machine Learning. Aberdeen: Morgan Kaufmann Pablishers, 1992: 249-256.
  • 10Witten I H, Frank E. Data mining practical machine learning tools and techniques [M]. Beijing: China Machine Press, 2006.

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部