期刊文献+

含噪混合数据中相关源信号的盲分离

Blind separation of correlated sources in noisy mixtures
下载PDF
导出
摘要 本文在假设时间白噪声的基础上,通过对阵列施加一个较弱的旋转不变约束提出了一种针对相关源信号盲分离的方法。与现有方法相比,该方法不需要额外的源信号约束条件和噪声自相关矩阵的知识,因此具有较广的使用范围和较强的稳健性。另外,该方法较低的计算复杂度易于其工程实现。计算机仿真结果表明,本文提出的方法对于相关源信号的盲分离具有较好的效果。 Under the mild assumptions of temporally white noise and rotational invariance array, an efficient method is proposed to separate mutually correlated source signals from their instantaneous mixtures. Compared with existing methods, the proposed method does not need other constraint on the sources and the knowledge of noise correlation matrix, which means that it can be used in various applications and is more robust. Furthermore, the proposed algorithm is suitable for practical application due to its low computation complexity. Numerical simulations show that our proposed algorithm for blind separation of correlated sources in noisy mixtures is more effective than existing algorithms.
出处 《应用声学》 CSCD 北大核心 2011年第5期343-346,共4页 Journal of Applied Acoustics
基金 国防科工委资助项目(编号A1320070067)
关键词 盲源分离 相关源信号 稳健 计算复杂度 Blind source separation, Correlated sources, Robust, Computation complexity
  • 相关文献

参考文献14

  • 1COMON P. Independent component analysis: a new concept?[J]. Signal Processing, 1994, 36(3): 287-314.
  • 2CHOI S, CICHOCKI A, PARK H M, et al. Blind source separation and independent component analysis: a review[J]. Neural Information Processing-Letters and Reviews, 2005, 6(1): 1-57.
  • 3BELL A J, SWJNOWSKI T J, An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1129-1159.
  • 4KARHUNEN J, JOUTSENSALO J. Representation and separation of signals using nonlinear PCA type learning[J]. Neural Networks, 1994, 7: 113-127.
  • 5DIAMANTARAS K I, PAPADIMITR.IOU T. Applying PCA neural models for the blind separation of signals[J]. Neuralcomputing, 2009, 73: 3-9.
  • 6BELOUCHRANI A, MERAIM K A, Cardoso J F, et al. A blind source separation technique using second-order statistics [J]. IEEE Transactions on Signal Processing, 1997 45(2): 434-444.
  • 7BELOUCHRANI A, CICHOCKI A. Robust whitening procedure in blind source separation context. Electronics Letters, 2000, 36(24): 2050-2051.
  • 8LIU W, MANDIC D P, CICHOCKI A. Analysis and online realization of the CCA approach for blind source separation[J]. IEEE Transactions on Neural Networks, 2007, 18(5): 1505-1510.
  • 9张延良,楼顺天,张伟涛.用于统计相关源信号的盲分离方法[J].西安电子科技大学学报,2009,36(3):401-405. 被引量:4
  • 10LI R. Dependent component analysis: concepts and main algorithms[J]. Journal of computers, 2010, 5(4): 589-597.

二级参考文献8

  • 1冶继民,张贤达,金海红.超定盲信号分离的半参数统计方法[J].电波科学学报,2006,21(3):331-336. 被引量:7
  • 2何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离[J].中国科学(E辑),2006,36(8):864-879. 被引量:26
  • 3Cardoso J F. Blind Signal Separation: Statistical Principles[J]. Proceeding of the IEEE, 1998, 86(10) : 2009-2025.
  • 4Comon P. Independent Component Analysis: a New Concept? [J]. Signal Processing, 1994, 36(3): 287-314.
  • 5Bell A J, Swjnowski T J. An Information-maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation, 1995, 7(6): 1129-1159.
  • 6Karhunen J, Joutsensalo J. Representation and Separation of Signal Using Nonlinear PCA Type Learning[J]. Neural Networks, 1994, 7(1): 113-121.
  • 7Zhu Xiaolong, Zhang Xianda, Ding Zizhe, et al. Adaptive Nonlinear PCA Algorithms for Blind Source Separation without Prewhitening[J]. IEEE Trans on Circuits and Systems, 2006, 53(3) : 745-753.
  • 8李小军,朱孝龙,张贤达.盲信号分离研究分类与展望[J].西安电子科技大学学报,2004,31(3):399-404. 被引量:33

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部