期刊文献+

制备工艺对N型Bi_2Te_(2.4)Se_(0.6)合金热电性能的影响 被引量:3

Effect of preparation methods on thermoelectric properties of N-type Bi_2Te_(2.4)Se_(0.6) bulk alloys
下载PDF
导出
摘要 采用缓慢冷却和液氮淬火两种真空熔炼工艺得到Bi2Te2.4Se0.6合金铸锭,再将铸锭研磨后热压烧结制备N型多晶样品。采用XRD、FESEM、激光热导仪及电学性能测试仪对样品的物相组成、断面形貌和热电性能进行分析和研究。结果表明:制备的多晶样品为单相;振动研磨得到的粉末热压后保留大量的微米级(1~5μm)颗粒。结合取向因子的计算结果可以推断,样品中无明显的晶粒择优取向;采用液氮淬火制备的样品由于晶粒细化的影响,其热导率显著降低,热电性能得到改善。在300~500 K温度范围内,液氮淬火试样BTSRS-OM-HP具有最大的功率因子和最低的晶格热导率;室温至500 K范围内,样品的晶格热导率保持在0.42~0.51 W/(m.K)之间,在468 K时,获得最大ZT值0.87。 The Bi2Te2.4Se0.6 polycrystalline samples were prepared by smashing Bi2Te2.4Se0.6 alloys combined with a subsequent hot pressing sintering technique.The thermoelectric properties were measured at 300?500 K.XRD analysis shows that the single phase Bi2Te3 is obtained.The FESEM results show that the fracture morphologies of samples show that the particle size of hot pressed samples remains micrometer scale ranging from 1 to 5 μm.The crystal growth with disordered crystal orientation according to the values of orientation factor F.The measurements of thermoelectric properties show that an improvement in thermoelectric figure of merit is obtained caused by a remarkable decrease in thermal conductivity due to strong phonon scattering induced by a fine microstructure of the sample BTSRS-OM-HP prepared by rapid solidification combined with hot pressing process,whose lattice thermal conductivity ranges within 0.42~0.51 W/(m-K) from room temperature to 500 K,and the maximum dimensionless merit figure ZT value of 0.87 is obtained at 468 K.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2011年第8期1916-1920,共5页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(50731006 50971115) 浙江省科技厅面上项目(2009C34007)
关键词 Bi2Te2.4Se0.6 液氮淬火 热电性能 热电材料 Bi2Te2.4Se0.6 liquid nitrogen quenching thermoelectric properties thermoelectric materials
  • 相关文献

参考文献17

  • 1JEFFREY S G TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7:105-114.
  • 2DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285: 703-706.
  • 3CAO Yi-qi, ZHAO Xin-bing, ZHU Tie-jun, TU Jiang-ping. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure[J]. Applied Physics Letters, 2008, 92(143106): 1-3.
  • 4NI Hua-liang, ZHAO Xin-bing, ZHU Tie-jun, JI Xiao-hua, TU .liang-ping. Synthesis and thermoelectric properties of Bi2Te3 based nanocomposites[J]. Journal of Alloys and Compounds, 2005, 397: 317-321.
  • 5TRITT T M. Thermoelectric materials-holey and unholey semiconductors[J]. Science, 1999, 283: 804-805.
  • 6LARSON P, MAHANTI S D, KANATZIDIS M G. Electronic structure and transport of Bi2Ye3 and BaBiTe3[J]. Physical Review D, 2000, 61: 8162-8171.
  • 7POUDEL B, HAO Qing, MA Yi, LAN Yu-cheng, M1NNICH A, YU Bo, YAN Xiao, WANG De-zhi, MUTO A, VASHAEE D, CHEN Xiao-yuan, LIU Jun-ming, DRESSELHAUS M S, CHEN Gang, REN Zhi-feng, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320: 634-638.
  • 8TANG Xin-feng, XIE Wen-jie, HAN Li, ZHAO Wen-yu, ZHANG Qing-jie. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure[J]. Applied Physics Letters, 2007, 90(012102): 1-3.
  • 9ZHU Tie-jun, YAN Feng, ZHAO Xin-bing, ZHANG Sheng-nan, CHEN Yi, YANG Sheng-hui. Preparation and thermoelectric properties of bulk in situ nanocomposites with amorphous/ nanocrystal hybrid structure[J]. Journal of Physics D: Applied Physics, 2007, 40: 6094-6097.
  • 10ZHANG Sheng-nan, HE Jian, ZHU Tie-jun, ZHAO Xin-bing, TRITT T M. Thermal conductivity and specific heat of bulk amorphous chalcogenides Ge20Te80-xSex (x=0, 1, 2, 8)[J]. Journal of Non-Crystalline Solids, 2009, 335: 79-83.

二级参考文献27

  • 1刘海强,唐新峰,王焜,宋晨,张清杰.Ti_(1-x)(Hf_(0·919)Zr_(0·08))_xNiSn的制备及热电性能[J].物理学报,2006,55(4):2003-2007. 被引量:2
  • 2Uher C,Yang J,Hu S,et al.Transport properties of pure and doped MNiSn (M=Zr,Hf).Phys.Rev.B,1999,59(13): 8615-8621.
  • 3Aliev F G,Kozyrkov V V,Moshchalkov V V,et al.Narrow band in the intermetallic compounds MNiSn (M = Ti,Zr,Hf).Z.Phys.B,1990,80(3): 353-357.
  • 4Hohl H,Ramirez A P,Goldmann C,et al.Efficient dopants for ZrNiSn-based thermoelectric materials.J.Phys.Condens.Matter.,1999,11(7): 1697-1709.
  • 5Bhattacharya S,Tritt M T,Xia Y,et al.Grain structure effects on the lattice thermal conductivity of Ti-based half-Heusler alloys.Appl.Phys.Lett.,2002,81: 43-45.
  • 6Bhattacharya S,Skove M J,Russell M,et al.Effect of boundary scattering on the thermal conductivity of TiNiSn-based half-Heusler alloys.Phys.Rev.B,2008,77(18): 184203-1-8.
  • 7Sharp J W,Poon S J,Goldsmid H J.Boundary scattering and the thermoelectric figure of merit.Phys.Stat.Sol.(a),2001,187(2): 507-516.
  • 8Hasaka M,Morimura T,Sato H,et al.Thermoelectric properties of Tix(HfyZr1-y)1-xNiSn0.998Sb0.002 half-Heusler ribbons.J.Electron.Mater.,2009,38(7): 1320-1325.
  • 9Morimurat T,Hasaka M,Yoshida S,et al.Microstructures and thermoelectric properties of an annealed Ti0.5(Hf0.5Zr0.5)0.5NiSn0.998Sb0.002 ribbon.J.Electron.Mater.,2009,38(7): 1154-1158.
  • 10Yu C,Zhu T J,Xiao K,et al.Reduced grain size and improved thermoelectric properties of melt spun (Hf,Zr)NiSn half-Heusler alloys.J.Electron.Mater.,2009,DOI: 10.1007/s11664-009-1032-8.

共引文献5

同被引文献26

  • 1王洪涛,王旭,余永宁.纳米WC/Co硬质合金粉末烧结早期的晶粒长大研究[J].稀有金属与硬质合金,2005,33(1):18-21. 被引量:17
  • 2吕强,荣剑英,赵磊,张红晨,胡建民,信江波.热压工艺参数对n型和p型Bi_2Te_3基赝三元热电材料电学性能的影响[J].物理学报,2005,54(7):3321-3326. 被引量:14
  • 3VINING C B. An inconvenient truth about thermo-electrics[J]. Nature Materials, 2009, 8(2): 83-85.
  • 4ZHANG Xiao, ZHAO Li-dong. Thermoelectric materials: Energy conversion between heat and electricity[J]. Journal of Materiomics, 2015, 1(2): 92-105.
  • 5BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.
  • 6SNYDER G J, TOBERER E S. Complex thermo- electric materials[J]. Nature Materials, 2008, 7(2): 105-114.
  • 7BASHIR M B A, SAID S M, SABRI M F M, SHNAWAH D A, ELSHEIKH M H. Recent advances on Mg2Si~-xSnx materials for thermo-electric generation[J]. Renewable and SustainableEnergy Reviews, 2014, 37: 569-584.
  • 8VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, O'QUINN B. Thin-film thermo-electric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.
  • 9HARMAN T C, TAYLOR P J, WALSH M P, LAFORGE B E. Quantum dot superlattice thermo-electric materials and devices[J]. Science, 2002, 297(5590): 2229-2232.
  • 10NIELSCH K, BACHMANN J, KIML1NG J. Thermoelectric nanostructures: from physical model systems towards nanograined composites[J]. Advanced Energy Materials, 2011, 1: 713-731.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部