期刊文献+

基于云关联规则的蚁群聚类算法研究 被引量:2

Research on Ant Clustering Algorithm Based on Cloud Model Association Rules
下载PDF
导出
摘要 基于云模型在非规范知识表示中的优良特征,本文提出了一种基于云关联规则的改进蚁群聚类算法.通过在邻域内进行基于云模型关联规则的概念快速动态软划分来产生最大内聚核,重新定义接受分数模型,使属性论域上正态隶属云实现平滑变迁,加快了聚类收敛过程.实验结果表明,改进算法能产生高纯度的聚类簇,提高了聚类过程的收敛速度. Based on the excellent features of cloud model in the non-normative knowledge representation, the paper presents an algorithm which improves ant colony clustering on cloud-model association rules. By the dynamic and quick soft partition of concept based on cloud-model association rules in neighborhood, the greatest cohesive core is produced, then the calculating formula of accepted scores is redefined and normal membership clouds on the domain of membership are smoothly changed and the clustering-convergence process is accelerated. Experimental results show that the algorithm can form the clustering of high purity and improve the convergence speed of clustering process.
作者 孟昱煜
出处 《兰州交通大学学报》 CAS 2011年第4期21-24,共4页 Journal of Lanzhou Jiaotong University
基金 甘肃省自然科学基金(0916RJZA031)
关键词 云模型 关联规则 蚁群聚类算法 cloud model association rule ant colony clustering algorithm
  • 相关文献

参考文献8

二级参考文献45

共引文献307

同被引文献14

  • 1Agrawal R -Srikant R. Fast algorithms for mining associationrules [C] / / T h e International Conference onVery Large Data Bases. San Francisco: M o r g a n Kaufmann.1994,487 : 24-99.
  • 2K u o R J,Chao C M , C h i u Y T. Application of particlea w a r m optimization to association rule mining[J]. A p pliedSoft Computing,2011,11(1) :326-336.
  • 3Gupta M . Application of weighted particle s w a r m optimizationin association rule mining [J]. InternationalJournal of Computer Science and Informatics, 2 0 1 2 , 1( 3 ):69-74.
  • 4Sarath K N V D ,Ravi V. Association rule mining usingbinary particle s w a r m optimization [J]. EngineeringApplications of Artificial Intelligence, 2 0 1 3,26 (8):1832-1840.
  • 5Asadi A ,Afzali M ,Shojaei A ,et al. N e w binary P S Obased method for finding best thresholds in associationrule mining[J]. Life Science Journal- 2 0 1 2 ,9 (4) ; 2 6 0 264.
  • 6Asadi A ,Shojaei A ,Saeidi S ,et al. A n e w method forthe discovery of the best threshold value for findingpositive or negative association rules using binary particles w a r m optimization [J]. International Journal ofComputer Science Issues,2012,9(6) :315-320.
  • 7Savasere A ,Omiecinski E ,Navathe S B. A n efficeientalgorithm for mining association rules in large databases[C] / / T h e International Conference on Very LargeData Bases. San Francisco: M o r g a n Kaufmann, 1 9 9 5:432-444.
  • 8Agrawal R,Imielinski T , S w a m i A. Mining associationrules between sets of items in large databases [C] / /Proceedings of the 1993 A C M S I G M O D Conference.N e w Y o r k : A C M Press, 1993,22(2) :207-216.
  • 9Vya s P -C h auhan A. Comparative optimization of efficientassociation rule mining through P S O and G A[C]//2013 International Conference on Machine IntelligenceResearch and Advancement. N e w Jersey: I E E EPress,2013,55(10):258-263.
  • 10W u r S Y -Leu Y. A n effective boolean algorithm formining association rules in large databases [C]//DatabaseSystems for Advanced Applications. N e w Jersey:I E E E Press,1999:179-186.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部