期刊文献+

基于分层模糊的水泥预分解系统温度建模研究 被引量:1

Rearch on Temperature Modeling of Cement Production Line Predecompose System Based on Hierarchical Fuzzy System
下载PDF
导出
摘要 针对新干法水泥预分解系统具有多输入变量、大滞后、大惯性和不确定的特征,文中提出了一种分层模糊建模方法,该方法采用増一型和二叉树型混合的分层结构,借助聚类方法和ANFIS获取各层模型变量的隶属度函数及推理规则。模型合理引入了历史信息以表达对象的动态特性。经系统模型的仿真结果与实际数据相比较,其拟合误差约为2%,表明所给模型具有良好的逼近性能,并且已经被应用于熟料生产过程仿真与操作培训系统。 To solve the problems such as more variables, large delay,large inertia and uncertainty characteristics, a kind of hierarchical fuzzy model was presented in this paper which combined the ‘one-plus' and ‘binary tree' structure. The cluster analysis and ANFIS were used to get the membership functions and the inference rules. The history information was considered in this model,which gave the model dynamic characteristics. With the contrast between the simulation model and the real data, the error of fitting is turned out to be about 2%, which indicate the capability of approximating to the plant,and has been used in clinker production process simulation and operator training systems.
出处 《自动化与仪表》 北大核心 2011年第9期1-5,共5页 Automation & Instrumentation
基金 河南省科技厅2010年河南省重点科技攻关计划项目(102102210376) 河南省教育厅自然科学基金项目(2010A120008)
关键词 分层模糊 建模 动态 新干法水泥 预分解 hierarchical fuzzy system modeling dynamic new dry production predecompose
  • 相关文献

参考文献10

  • 1Raju G V S, Zhou J, Kisner Roger A. Hierarchical fuzzy control[J].International Journal of Control, 1991,54(5) : 1201-1216.
  • 2孙多青,霍伟.具有任意形状隶属函数的分层模糊系统逼近性能研究[J].控制理论与应用,2003,20(3):377-381. 被引量:16
  • 3杜新宇,张乃尧.二叉树型分层模糊系统的等效性分析[J].清华大学学报(自然科学版),2004,44(7):993-996. 被引量:5
  • 4Sun-Yuan Kung,Taur J,Shang-Hung Lin. Synergistic modeling and applications of hierarchical fuzzy neural networks[J]. Proceedings of the IEEE, 1999,87(9) : 1550-1574.
  • 5Shuang Feng. Takagi-sugeno fuzzy system based hierarchical hybrid fuzzy-neural networks [ J ].Information Engineering(ICIE ), 2010,1:15-15.
  • 6Wen Yu, Moreno-Armendariz M A, System identification using hierarchical fuzzy neural networks with stable learnig algorithms[C]//Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain, 2005,12:4089-4094.
  • 7滕树杰,张乃尧,崔震华.核动力装置蒸汽发生器水位的分层模糊自适应控制[J].控制与决策,2002,17(6):933-936. 被引量:19
  • 8陶从喜,彭学平,胡芝娟,刘继开,余锦辉.TSD型分解炉的研究开发及工程应用(上)[J].水泥技术,2006(4):25-27. 被引量:1
  • 9Takagi T,Sugeno M.Fuzzy identification of systems and its application to modeling and control [J].IEEE Trans on Systems, Man, and Cybernetics, 1985,15 ( 1 ) : 116-132.
  • 10Jyh-shing Roger Jang,ANFIS:adaptive-network-based fuzzy inference system[J].IEEE Transaction on Systems, Man, and Cybernetics, 1993,23 (3) : 665-685.

二级参考文献16

  • 1姚良忠,郭人俊,马昌文,解正国,周世新,毛蓓琳,祖拉提.核电厂中的模糊控制[J].核动力工程,1996,17(1):17-22. 被引量:4
  • 2Raju G V S, ZHOU Jun. Hierarchical fuzzy control [J]. Int J Control, 1991, 54(5): 1201-1216.
  • 3WANG Li-Xin. Analysis and design of hierarchical fuzzy systems [J]. IEEE trans on fuzzy systems, 1999, 7(5): 617-624.
  • 4TU Kuo-Yang, LEE Tsu-Tian, WANG Wen-Jieh. Design of a multi-layer fuzzy logic controller for multi-input multi-output systems [J]. Fuzzy Sets and Systems, 2000, 111: 199-214.
  • 5Joo M G, Lee J S. Universal approximation by hierarchical fuzzy system with constraints on the fuzzy rule [J]. Fuzzy Set and Systems, 2002, 130: 175-188.
  • 6DU Xinyu, ZHANG Naiyao. Structure analysis of MISO typical fuzzy controllers [A]. IIGSS-CB FSE'04 [C]. Da- lian: ASSA, 2004.
  • 7WANG Lixin. Stable adaptive control of nonlinear systems [ J ].IEEE Trans on Fuzzy Systems, 1993,1(2) : 146- 155.
  • 8RAJU G V S, ZHOU Jun, KISNER R A. Hierarchical fuzzy control[J]. Int J Control,1991,54(5):1201 - 1216.
  • 9WANG Lixin. Universal approximator by hierarchical fuzzy systems[J]. Fuzzy Sets and Systems, 1998,93(2) :223 - 230.
  • 10WANG Lixin. Analysis and design of hierarchical fuzzy systems[J].IEEE Trans on Fuzzy Systems, 1999,7(5) :617- 624.

共引文献35

同被引文献9

  • 1Daugman J G. Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988,36 (7):1169-1178.
  • 2Pati Y C, Krishnaprasad P S. Analysis and Synthesis of Feedforward Neural Networks Using Discrete Affine Wavelet Trans- formations[J]. IEEE Transactions on Neural Networks, 1992,4(1):73-85.
  • 3Zhang Q, A Benveniste. Wavelet Networks[J]. IEEE Transactions on Neural Networks, 1992,3 (6) :889-898.
  • 4Szu H H, Teller B A, Kadambe S L. Neural Network Adaptive Wavelets for Signal Representation and Classification[J]. Op tical Engineering, 1992,31 (9) : 1907 - 1916.
  • 5Huang G B, Zhu Q Y, Siew C K. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006,70(1- 3) :489-501.
  • 6Deng W, Chen L. Color Image Watermarking Using Regularized Extreme Learning Machine[J]. Neural Network World, 2010,20(3) :317-330.
  • 7Choi K, Toh K A, Byun H. Realtime Training on Mobile Devices for Face Recognition Applications[J]. Pattern Recognition, 2011,44(2) :386-400.
  • 8Saraswathi S, Sundaram S. ICGA-PSO-ELM Approach for Accurate Multiclass Cancer Classification Resulting in Reduced Gene Sets in Which Genes Encoding Secreted Proteins are Highly Represented[J]. IEEE/ACM Transactions on Computation- al Biology and Bioinformatics, 2011,6(2) :452-463.
  • 9刘晓琳,袁昆.基于神经网络的分解炉温度控制过程建模[J].新世纪水泥导报,2004,10(1):39-42. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部