摘要
为了解决传统谱聚类算法对大尺寸海洋图像难以进行有效计算的问题,提出一种改进的谱聚类算法.采用分块方法将原始图像分割成多个子图,同时结合随机采样算法利用采集的样本估计全局样本,在保证分割精度基础上大大降低计算复杂度,有效地处理高维图像.针对随机采样的不稳定性,采用多次采样聚类并结合大多数投票的方法,得出最终的分割结果.仿真结果显示,改进算法可以有效降低计算复杂度,并保证聚类算法计算复杂度的减少与图像大小成正比,分块方法和多次聚类结果的融合可以大大提高溢油目标分割的精度.
In order to solve the problem that classical spectrum clustering algorithm can not calculate effectively for the large sea images,an improved spectral clustering algorithm is proposed.The partition method is used to divide the original image into multiple sub-images,and the collected samples are employed to estimate global samples combining with the random sampling algorithm.Thus,the computational complexity is greatly reduced on the basis of guaranteeing segmentation accuracy,and high dimensional images are processed effectively.Multiple sampling clustering combining with the majority voting method is used to obtain the final segmentation results in view of the instability of the random sampling.The simulation results show that the improved algorithm can reduce the computational complexity efficiently,and guarantee the decrease of computational complexity proportional to the size of images.Meanwhile,the hybrid of partitron method and multiple clustering can make the segmentation of oil spill target reach high precision.
出处
《上海海事大学学报》
北大核心
2011年第3期68-73,共6页
Journal of Shanghai Maritime University
基金
上海市科学技术委员会重点课题(08240510800)
关键词
合成孔径雷达
溢油
图像分割
计算复杂度
分块方法
随机采样算法
聚类标签统一
大多数投票
synthetic aperture radar
oil spill
image segmentation
computational complexity
partition method
random sampling algorithm
clustering label merging
majority voting