期刊文献+

基于支持向量机的轿车车型识别 被引量:5

Recognition of car model based on support vector machine
下载PDF
导出
摘要 为了从轿车图像中快速、准确地识别出轿车车型,采用支持向量机(Support Vector Ma-chine,SVM)方法作为分类器,以轿车的长、宽、高和轴距等4个特征参数作为输入特征向量,并根据这些特征向量对不同车型进行分类和识别.实验结果表明,对11个品牌15种车型的识别准确率达100%.本研究表明,在正确选取轿车的特征参数基础上,采用SVM方法识别轿车车型可以达到很好的效果,SVM方法在智能交通管理系统等领域具有较高的应用价值. To recognize models from the car pictures quickly and accurately,the Support Vector Machine(SVM) method is used as classifier,and four feature parameters of cars,including length,width,height and wheelbase,are chosen as the input of characteristic vectors,and variant car models are classified and identified according to the characteristic vectors.The experimental results show that accuracy rate of recognition reaches 100% for as many as 15 various models of 11 brands.The experiment indicates that car model recognition based on the right selection of feature parameters is of good performance by using the SVM method.This SVM method has a high application value in the intelligent traffic management systems and other relative fields.
出处 《上海海事大学学报》 北大核心 2011年第3期85-89,共5页 Journal of Shanghai Maritime University
基金 上海市教育委员会重点学科建设项目(J50604) 上海市科学技术委员会项目(09DZ2250400) 上海海事大学校基金(20090169)
关键词 支持向量机 轿车 识别 特征 support vector machine(SVM) car recognition feature
  • 相关文献

参考文献9

二级参考文献58

共引文献19

同被引文献44

  • 1宋丹,徐蔚鸿.基于模糊理论的车型识别[J].计算机技术与发展,2006,16(3):47-49. 被引量:12
  • 2才秀凤,马立肖,赵占芳.基于改进Hough变换的圆形物体检测[J].电脑开发与应用,2007,20(3):40-42. 被引量:4
  • 3GUPTE S, MASOUD O, MARTIN R F K, PAPANIKOLOPOULOS N P.Detection and classification of vehicles [J]. IEEE Trans Intell Transport Syst, 2002, 3(1): 37-47.
  • 4Osher S, Sethian J A. Fronts Propagating with eurvature dependent speed: Algorithms based on the Hamilton- Jacobi- fonnulation [J].Journal of Com Putational Physies,1988, 79(1): 12-49.
  • 5Chunming Li, Chenyang Xu, Changfeng Gui, Martin D. Fox. Level Set Evolution Without Re-initialization: A New Variational Formulation [J]. Proceedings of the 2005 iEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) , 2005, 1063-6919.
  • 6Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins. Digital Image Processing Using MATLAB [M].Beijing, Publishing House of Electronics Industry, 2004:334-356.
  • 7SARDOU1E S H, SHAMSOLLAHI M B. Selection of efficient features for discrimination of hand movements from MEG using a BCI competition IV data set [J]. Frontiersin Neuroscience, 2012 (6) : 42 -47.
  • 8KRISHNA S, VINAY K C, RAJA K B. Efficient MEG signal decoding of direction in wrist movement using curve fitting (EMDC) [ C]//2011 lnt Conf Image Inform Proc (ICIIP). IEEE, 2011: 1-6.
  • 9SABRA N I, WAHED M A. The use of MEG-based brain computer interface for classification of wrist movements in four different directions [ C ]// 2011 28th Natl Radio Sci Conf (NRSC). IEEE, 2011 : 1-7.
  • 10LEI Y, LIN J, HE Z, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery [J]. Mech Systems & Signal Process- ing, 2013, 35(1): 108-126.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部