摘要
在变指数Lebesgue空间Lp(x)(Ω)和变指数Sobolev空间Wk,p(x)(Ω)基本理论体系上,研究了下面的p(x)-Laplacian问题:-div[(d+|u|2)p(2x)-1u]=-λ|u|p(x)-2u+f(x,u),x∈Ω{u=0,x∈Ω其中Ω是瓗N中的具有光滑边界的有界区域,0<d<∞,λ>0为常数.利用山路引理证明了上述的主部为-div[(d+|u|2)p(2x)-1u]一类p(x)-Laplacian问题在超线性的情况下解的存在性.
Based on the theory of the variable exponent Lebesgue spaces Lp(x)(Ω) and Sobolev spaces Wk,p(x)(Ω) ,this paper studied the following p(x)-Laplacian problem:-div[(d+|u|2)p(x)2-1u]=-λ|u|p(x)-2u+f(x,u),x∈Ω u=0,x∈Ω Where ΩN was a bounded domain with smooth boundary and 00 were constant.Applying the mountain pass lemma,the existence of solution for the above-mentioned p(x)Laplacian problem with principal parts-div[(d+|u|2)p(x)2-1u] was proved and in the superlinear case.
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
2011年第4期614-617,620,共5页
Journal of Harbin University of Commerce:Natural Sciences Edition
基金
黑龙江省教育厅科学技术研究项目(11541082)