期刊文献+

基于邻加矩阵的严格最佳光正交码的构造方法研究

Study on construction of strict-optimal optical orthogonal code based on o-plus matrix
下载PDF
导出
摘要 在区组设计和邻加理论基础上,给出了光正交码与邻加矩阵的关系.提出了一种基于邻加矩阵构造严格最佳光正交码的方法.采用该方法可以提高仿真效率、节省码长,并达到Johnson界的容量限.这对构造严格最佳光正交码具有一定的实际意义. The relationship between optimal optical orthogonal code and O-plus matrix is given within the framework of block design and O-plus.An O-plus matrix-based method is brought forward to construct strict-optimal optical orthogonal code.The method has high simulation efficiency,saves code length,reaches the upper limit of Johnson capacity and proves to be valid in the construction of strict-optimal optical orthogonal code.
出处 《河北工业大学学报》 CAS 北大核心 2011年第4期1-4,共4页 Journal of Hebei University of Technology
基金 国家自然科学基金(60502016) 河北省教育厅科研计划项目(2008318)
关键词 光码分多址 严格最佳光正交码 邻加矩阵 自相关 互相关 optical code division multiple access strict-optimal optical prthogonal code o-plus matrix autocorrelation cross-correlaton
  • 相关文献

参考文献6

  • 1Reza Omrani. Wavelength time optical orthogonal codes and phase encoding sequences for optical CDMA [D]. University of Southern California, 2006.
  • 2An Xiaoqiang, Qiu Kun. Construction for optimal optical orthogonal codes [C] //IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions. 2002: 96-100.
  • 3Johnson Selmer M. A new upper bound for error-correcting codes [J]. IRE Trans. Inform. Theory. 1962, 4: 203-207.
  • 4Ryoh Fuji-Hara, Ying Miao. Optical orthogonal codes: their bounds and new optimal constructions. IEEE Trans. Inform. Theory. 2000, 46 (7): 2396-2406.
  • 5安晓强,邱昆,张崇富.一种严格最佳(ν,k,1)光正交码的设计方法[J].应用光学,2006,27(4):268-273. 被引量:2
  • 6李晓滨,宋建中.最佳(F,K,1)光正交码的构造算法研究[J].中国激光,2003,30(5):417-420. 被引量:6

二级参考文献13

  • 1SALEHI J A.Code division multiple-access techniques in optical fiber networks-part Ⅰ:fun-damental principles[J].IEEE Trans Comm,1989,37 (8):824833.
  • 2SALEHI J A,BRACKETT C A.Code division multiple-access techniques in optical fiber networks-part Ⅱ:systems performance analysis[J].IEEE Trans Comm,1989,37(8):834-842.
  • 3CHUNG F R K,SALEHI J A.Optical orthogonal codes:design,analysis,and applications[J].IEEE Trans Inform Theory,1989,35(5):595-604.
  • 4RYOH Fuji-hara,YING Miao.Optical orthogonal codes:their bounds and new optimal constructions[J].IEEE Trans Inform Theory,2000,46 (11):2396-2406.
  • 5JOHNSON S M.A new upper bound for errorcorrecting codes[J].IEEE Trans Inform Theory,1962,IT 8(4):203-207.
  • 6YIN Jian-xing.Some combinatorial constructions for optical orthogonal codes[J].Discrete Mathematics,1998(185):201-219.
  • 7HALL M.Combinatorial Theory[M].2nd deition.New York:Wiley,1986.
  • 8WILSON R M.Cyclotomy and difference families in elementary Abelian groups[J].J Number Theory,1972(4):17-47.
  • 9DUDLEV U.Elementary number theory[M].2nd edition.San Francisco:W H Freeman and Company,1978.
  • 10J.-G. Zheng,W. C. Kwong.Effective design of optical codedivision multiple access networks by using the modified prime code[].Electronics Letters.1997

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部