期刊文献+

基于改进粒子群算法的优化策略 被引量:8

Novel Optimization Mechanism Based on Improved Particle Swarm Optimization
下载PDF
导出
摘要 为提高传统粒子群算法的搜索速度和搜索精度,提出了一种改进的自适应粒子群优化算法.将正则变化函数和慢变函数引入传统位置更新和速度更新公式当中,形成两种新的更新机制:搜索算子和开发算子.在算法运行的初始阶段,种群中大部分个体将按照搜索算子进行更新,搜索算子将有助于种群遍历整个解空间;随着迭代次数的增加,按照搜索算子进行更新的个体将逐渐减少,而按照开发算子进行更新的个体将逐渐增多,开发算子将有效地克服陷入局部最优解的问题.通过典型测试函数的仿真实验,新算法在加快收敛速度同时,提高了算法的全局搜索能力. To accelerate searching speed and optimization accuracy of traditional PSO,an improved particle swarm optimization(PSO) algorithm was presented.Regularly varying function and slowly varying function were introduced in the position and velocity update formula.New mechanisms such as explorative operator and exploitative operator are formulated.At the beginning,most elements will be updated by explorative operator in the entire search space sufficiently.Within the iterations,more and more particles will be handled by exploitative operator,which are useful to overcome the deceptions of multiple local optima.It can be seen from the simulation results of the standard benchmark test functions that the proposed algorithm not only accelerates the convergence process,but also improves global optimization ability.
作者 卢峰 高立群
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期1221-1224,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60674021)
关键词 进化算法 粒子群算法 全局优化 慢变函数 自适应 evolutionary algorithms particle swarm optimization global optimization slowly varying function self-adaptive
  • 相关文献

参考文献11

  • 1Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agents [ J ]. IEEE Transactions on System, Man, and Cybernetics : Part B, 1996,26(1 ) :29 - 41.
  • 2Kennedy J, Eberhart R. Particle swarm optimization[C]// Proceedings of International Conference on Neural Networks in 1995. New York: IEEE Press, 1995:1942- 1948.
  • 3Gaing Z L. Particle swarm optimization to solving the economic dispatch considering the generator constraints [J ].IEEE Transactions on Power System, 2003,18(3) : 1187 - 1195.
  • 4Fan S, Zahara E. A hybrid simplex search and particle swarm optimization for unconstrained optimization [ J ]. European Journal of Operational Research, 2007,181 (2) : 527- 548.
  • 5Li X D. Niching without niching paramenters: particle swarm optimization using a ring topology [ J ]. IEEE Transactions on Evolutionary Computation, 2010,14 ( 1 ) : 150 -169.
  • 6Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems [ C]//Evolutionary Computation. New York.' IEEE, 2004 : 1980 - 1987.
  • 7Shi Y, Eberhart R. A modified particle swarm optimization [C]//IEEE World Congress on Computational Intelligence. New York: IEEE, 1998:69- 73.
  • 8Galarnbos J, Seneta E. Regularly varying sequences [ C ]// Proceedings of the American Mathematical Society. RHode Island:American Mathematical Society, 1973:110 -116.
  • 9Hansen N. Compilation of results on the 2005 CEC benchmark function sets[EB/OL]. [2009 - 10 -23]. http: //www3. ntu. edu. sg/home/epnsugan/indexfiles/CEC - 05/compareresults. pdf.
  • 10Clerc M, Kennedy J. The particle swarm--explosion, stability, and convergence in a multidimensional complex space [ J ]. IEEE Transactions on Evolutionary Computation, 2002,6(1) :58 - 73.

同被引文献65

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部