期刊文献+

Nonlinear Maps Satisfying Derivability on the Parabolic Subalgebras of the Full Matrix Algebras 被引量:1

Nonlinear Maps Satisfying Derivability on the Parabolic Subalgebras of the Full Matrix Algebras
下载PDF
导出
摘要 Let F be a field of characteristic 0, Mn(F) the full matrix algebra over F, t the subalgebra of Mn(F) consisting of all upper triangular matrices. Any subalgebra of Mn(F) containing t is called a parabolic subalgebra of Mn(F). Let P be a parabolic subalgebra of Mn(F). A map φ on P is said to satisfy derivability if φ(x·y) = φ(x)·y+x·φ(y) for all x,y ∈ P, where φ is not necessarily linear. Note that a map satisfying derivability on P is not necessarily a derivation on P. In this paper, we prove that a map φ on P satisfies derivability if and only if φ is a sum of an inner derivation and an additive quasi-derivation on P. In particular, any derivation of parabolic subalgebras of Mn(F) is an inner derivation. Let F be a field of characteristic 0, Mn(F) the full matrix algebra over F, t the subalgebra of Mn(F) consisting of all upper triangular matrices. Any subalgebra of Mn(F) containing t is called a parabolic subalgebra of Mn(F). Let P be a parabolic subalgebra of Mn(F). A map φ on P is said to satisfy derivability if φ(x·y) = φ(x)·y+x·φ(y) for all x,y ∈ P, where φ is not necessarily linear. Note that a map satisfying derivability on P is not necessarily a derivation on P. In this paper, we prove that a map φ on P satisfies derivability if and only if φ is a sum of an inner derivation and an additive quasi-derivation on P. In particular, any derivation of parabolic subalgebras of Mn(F) is an inner derivation.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第5期791-800,共10页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No.11071040) the Natural Science Foundation of Fujian Province (Grant No. 2009J05005)
关键词 maps satisfying derivability parabolic subalgebras inner derivations quasi-derivations. maps satisfying derivability parabolic subalgebras inner derivations quasi-derivations.
  • 相关文献

参考文献10

  • 1BARKER G P, KEZLAN T P. The Automorphism Group of a Matrix Algebra [M]. North-Holland, New York, 1987.
  • 2CAO You'an, WANG Jingtong. A note on algebra automorphisms of strictly upper triangular matrices over commutative rings [J]. Linear Algebra Appl., 2000, 311(1-3): 187-193.
  • 3COELHO S P, MILIES C P. Derivations of upper triangular matrix rings [J]. Linear Algebra Appl., 1993, 187: 263-267.
  • 4ISAACS I M. Automorphisms of matrix algebras over commutative rings [J]. Linear Algebra Appl., 1980, 31: 215-231.
  • 5HUMPHREYS J E. Introduction to Lie Algebras and Representation Theory [M]. Springer-Verlag, New York-Berlin, 1972.
  • 6JoNDRUP S. Automorphisms and derivations of upper triangular matrix rings [J]. Linear Algebra Appl., 1995, 221: 205-218.
  • 7JoNDRUP S. Automorphisms of upper triangular matrix rings [J]. Arch. Math. (Basel), 1987, 49(6): 497- 502.
  • 8KEZLAN T P. A note on algebra automorphisms of triangular matrices over commutative rings [J]. Linear Algebra Appl., 1990, 135: 181-184.
  • 9MATHIS P. Differential polynomial rings and Morita equivalence [J]. Comm. Algebra, 1982, 10(18): 2001- 2017.
  • 10WANG Dengyin, YU Qiu. Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring [J]. Linear Algebra Appl., 2006, 418(2-3): 763-774.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部