期刊文献+

Maps Preserving Zero Lie Brackets on a Maximal Nilpotent Subalgebra of the Symplectic Algebra 被引量:1

Maps Preserving Zero Lie Brackets on a Maximal Nilpotent Subalgebra of the Symplectic Algebra
下载PDF
导出
摘要 Let F be a field with char F = 2, l a maximal nilpotent subalgebra of the symplectic algebra sp(2m,F). In this paper, we characterize linear maps of l which preserve zero Lie brackets in both directions. It is shown that for m ≥ 4, a map φ of l preserves zero Lie brackets in both directions if and only if φ = ψcσT0λαφdηf, where ψc,σT0,λα,φd,ηf are the standard maps preserving zero Lie brackets in both directions. Let F be a field with char F = 2, l a maximal nilpotent subalgebra of the symplectic algebra sp(2m,F). In this paper, we characterize linear maps of l which preserve zero Lie brackets in both directions. It is shown that for m ≥ 4, a map φ of l preserves zero Lie brackets in both directions if and only if φ = ψcσT0λαφdηf, where ψc,σT0,λα,φd,ηf are the standard maps preserving zero Lie brackets in both directions.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第5期829-839,共11页 数学研究与评论(英文版)
基金 Supported by the Doctor Foundation of Henan Polytechnic University (Grant No.B2010-93) the Natural Science Research Program of Education Department of Henan Province (Grant No.2011B110016) the Natural Science Foundation of Henan Province (Grant No. 112300410120) Applied Mathematics Provincial-level Key Discipline of Henan Province
关键词 maximal nilpotent subalgebra zero Lie brackets symplectic algebra. maximal nilpotent subalgebra zero Lie brackets symplectic algebra.
  • 相关文献

参考文献22

  • 1FROBENIUS G. Uber die darstellung der endlichen gruppen durch lineare substitutioen [J]. Sitzungsber Deutsch Akad Wiss Berlin, 1897, 994-1015.
  • 2LI C K, TSING N K. Linear preserver problems: a brief introduction and some special techniques [J]. Linear Algebra Appl., 1992, 162/164: 217-235.
  • 3PIERCE S, et al. A survey of linear preserver problems [J]. Linear and Multilinear Algebra, 1992, 33: 1-192.
  • 4LI C K, PIERCE S. Linear preserver problems [J]. Amer. Math. Monthly, 2001, 108(7): 591-605.
  • 5DOLINAR G, SEMRL P. Determinant preserving maps on matrix a/gebras [J]. Linear Algebra Appl., 2002, 348: 189--192.
  • 6HLADNIK M, OMLADIC M, RADJAVI H. Trace-preserving homomorphisms of semigroups [J]. J. Funct. Anal., 2003, 204(2): 269-292.
  • 7BELL J, SOUROUR A R. Additive rank-one preserving mappings on triangular matrix algebras [J]. Linear Algebra Appl., 2000, 312(1-3): 13-33.
  • 8SEMRL P. Linear mappings preserving square-zero matrices [J]. Bull. Austral. Math. Soc., 1993, 48(3): 365-370.
  • 9CHEBOTAR M A, KE W F, LEE P H. On maps preserving square-zero matrices [J]. J. Algebra, 2005, 289(2): 421-445.
  • 10DOLINAR G. Maps on matrix algebras preserving idempotents [J]. Linear Algebra Appl., 2003, 371: 287-300.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部