期刊文献+

Boundedness of Convolution-Type Operators on Endpoint Triebel-Lizorkin Spaces

Boundedness of Convolution-Type Operators on Endpoint Triebel-Lizorkin Spaces
下载PDF
导出
摘要 This paper focuses on the study of the boundedness of convolution-type Calderón-Zygmund operators on some endpoint Triebel-Lizorkin spaces. Applying wavelets, molecular decomposition and interpolation theory, the author establishes the boundedness on certain endpoint Triebel-Lizorkin spaces F˙10 ,q(2 q ≤ ∞) under a very weak pointwise regularity condition. This paper focuses on the study of the boundedness of convolution-type Calderón-Zygmund operators on some endpoint Triebel-Lizorkin spaces. Applying wavelets, molecular decomposition and interpolation theory, the author establishes the boundedness on certain endpoint Triebel-Lizorkin spaces F˙10 ,q(2 q ≤ ∞) under a very weak pointwise regularity condition.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第5期863-873,共11页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No. 10871209) Research Fund for the Doctoral Program of Higher Education (Grant No. 20090141120010)
关键词 convolution-type Calderón-Zygmund operators endpoint Triebel-Lizorkin spaces WAVELETS molecular decomposition. convolution-type Calderón-Zygmund operators endpoint Triebel-Lizorkin spaces wavelets molecular decomposition.
  • 相关文献

参考文献1

  • 1YANG Qixiang, YAN Lixin and DENG DonggaoDepartment of Mathematics, Zhongshan University, Guangzhou 510275, China.On Hrmander condition[J].Chinese Science Bulletin,1997,42(16):1341-1345. 被引量:8

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部