期刊文献+

并行单型规范分片线性函数极坐标数字预失真器

Parallel polar digital predistorter based on simplicial canonical piecewise linear function
下载PDF
导出
摘要 介绍了一种并行的基于单型规范分片线性(SCPWL)函数的极坐标数字预失真器模型。首先根据分片线性拟合原理引入绝对值型的单型规范分片线性函数,建立模型解析方程并推导出模型参数的最小二乘解,然后根据模型特点设计了数字预失真器的并行实现架构,并对模型架构的工作顺序和参数提取过程进行了介绍。仿真结果表明SCPWL极坐标预失真器远远优于传统的功率回退线性化技术,且与常用的复多项式预失真器相比较,尤其是在过饱和非线性失真情况下,其线性补偿能力要优于后者。 This paper presents a parallel polar digital predistorter by Simplicial Canonical PieceWise Linear(SCPWL) function.Firstly,the paper introduces an absolute value model SCPWL function that based on piecewise linear approximation theory,and derives the least square solution of the function.Then,according to the characteristic of the SCPWL model,parallel polar digital predistorter architecture is designed.And also the operation order and parameters extraction process of the predistorter structures are introduced.Lastly,the simulation experiment is carried out and the simulation results prove the SCPWL predistorter is far superior to the traditional power back-off linearization technique.Compared with complex polynomials predistorter,the nonlinear compensation capability of the SCPWL predistorter outperform the polynomials,especially in the supersaturated nonlinear distortion of PA.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第27期11-14,18,共5页 Computer Engineering and Applications
基金 四川省科技支撑计划基金(No.2010GZ0149) 粤港关键领域重点突破项目(No.200920523300005) 中央高校基本科研业务费(No.ZYGX2010J020)
关键词 单型规范分片线性函数 数字预失真器 功率回退法 复多项式模型 误差矢量幅度 相邻信道功率比 simplicial canonical piecewise linear function digital predistorter power back-off complex polynomials Error Vector Magnitude(EVM) Adjacent Channel Power Ratio(ACPR)
  • 相关文献

参考文献11

  • 1Anding Z, Draxler P J, Yan J J, et al.Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based volterra series[J].IEEE Transactions on Microwave Theory and Techniques,2008,56(7) : 1524-1534.
  • 2Kim J, Konstantinou K.Digital predistortion of wideband signals based on power amplifier model with memory[J].Electronics Letters,2001,37(23) : 1417-1418.
  • 3Isaksson M, Wisell D, Ronnow D.A comparative analysis of behavioral models for RF power amplifiers[J].IEEE Transactions on Microwave Theory and Techniques,2006,54( 1 ):348-359.
  • 4Tchrani A S, Haiying C,Afsardoost S, et al.A comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral models[J].IEEE Transactions on Microwave Theory and Techniques, 2010,58(6) : 1510-1520.
  • 5Liu T, Boumaiza S, Gharmouchi F M.Augmented hammerstein predistorter for linearization of broad-band wireless transmitters[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(4) : 1340-1349.
  • 6李星野,王书宁,王万宾.高维空间上连续分片线性函数的绝对值表示[J].自然科学进展,2002,12(2):192-196. 被引量:1
  • 7Julian P,Desages A,Agamennoni O.High-level canonical piecewise linear representation using a simplicial partition[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 1999,46 (4) : 463 -480.
  • 8Lin J N,Unbehauen R.Adaptive nonlinear digital filter with canonical piecewise-linear strucmre[J].IEEE Transactions on Circuits and Systems, 1990,37(3) :347-353.
  • 9Figueroa J L, Cousseau J E,de Figueiredo R J EA simplicial canonical piecewise linear adaptive filter[J].Circuits, Systems, and Signal Processing,2004,23(5) :365-386.
  • 10Cheong M Y,Wemer S,Cousseau J E,et al.Spectral characteristics of a piecewise linear function in modeling power amplifier type nonlinearities[C]//2010 IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),26-30 Sept 2010:639-644.

二级参考文献6

  • 1[1]Kang S M,et al.A global representation of multidimensional piece-wise linear functions with linear partitions.IEEE Trans,Circuits Syst,1978,25:938
  • 2[2]Kahlert C,et al.A generalized canonical piecewise linear representa-tion.IEEE Trans,Circuits Syst,1990,37:373
  • 3[3]Lin J N,et al.A generalization of canonical piecewise-linear func-tions.IEEE Trans,Circuits Syst,1994,41:345
  • 4[4]Guzelis G,et al.A canonical representation for piecewise affine maps and its applications to circuit analysis.IEEE Trans,Circuits Syst,1991,38:1342
  • 5[5]Breiman L.Hinging hyperplanes for regression,classification and function approximation.IEEE Trans,Inf Theory,1993,39(3):999
  • 6[6]Lin J N,et al.Canonical piecewise-linear approximations.IEEE Trans,Circuits Syst,1992,39:697

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部