期刊文献+

量子遗传算法优化神经网络的MIMO-OFDM检测研究 被引量:2

Research of MIMO-OFDM detection based on Neural Network optimized by Quantum Genetic Algorithm
下载PDF
导出
摘要 信号的最优检测在常规条件下是一NP难解问题,针对RBF(径向基函数)神经网络算法易陷入局部极值和简单遗传算法收敛速度慢的问题,提出一种新型智能算法并将其用于MIMO-OFDM系统信号检测中:该算法将量子计算、遗传算法与神经网络相结合,用量子遗传算法(QGA)优化神经网络初始值。由于QGA给RBF网络提供了较好的初始值,故能够使RBF网络快速收敛到最优解,避免了由初始值的随机选取而带来的检测误码。实验结果表明,该算法能够有效地提高系统的信号检测性能,降低误码率。 The optimal solution of signal detection is a Nondeterministic Polynomial(NP) problem.Aimed at the problems that Radial Basis Function(RBF) Neural Network is prone to the local optimum and simple genetic algorithm has the shortcoming of slow convergence,a new type of intelligent algorithm is proposed and applied into the MIMO-OFDM detection systems:it makes use of Quantum Genetic Algorithm(QGA) to optimize the initial data of RBF neural network.In this scheme,the output of detector by the QGA as the input of detector by neural network to avoid the bit-error rate for selecting initial data randomly and improve further the detection property.Simulation results show the proposed method is good for the improvement of the detection rate and reduction of bit-error rate.
作者 周敏
出处 《计算机工程与应用》 CSCD 北大核心 2011年第27期161-163,171,共4页 Computer Engineering and Applications
基金 教育部博士点基金项目(No.BJ206006)
关键词 量子算法 量子遗传算法 神经网络 多输入多输出 正交频分复用 信号检测 Quantum Algorithm(QA) Quantum Genetic Algorithm(QEA) Neural Network(NN) Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing(OFDM) signal detection
  • 相关文献

参考文献7

  • 1So K C, Cheng R S.Layered maximum likelihood detection for MIMO systems in frequency selective fading chalmels[J].IEEE Transactions on Wireless Commtmications,2006,5(4).
  • 2Chen S, Samingan A K, Hanzo L.Adaptive nears minimum error rate training for neural networks with application to multi-user detection in CDMA communication systems[J].Signal Processing, 2005,85 : 1435-1448.
  • 3Bolcskei H, Paulraj A J.Multiple-Input Multiple-Output(MIMO) wireless systems[J].IEEE Select Areas Communication, 2003, 21 (4) :281-302.
  • 4Yang Junan Li Bin Zhuang Zhenquan (Department of Electronic Science & Technology, USTC, Hefei 230026).RESEARCH OF QUANTUM GENETIC ALGORITH AND ITS APPLICATION IN BLIND SOURCE SEPARATION[J].Journal of Electronics(China),2003,20(1):62-68. 被引量:60
  • 5杨俊安,庄镇泉,史亮.多宇宙并行量子遗传算法[J].电子学报,2004,32(6):923-928. 被引量:65
  • 6洪亮.基于量子遗传算法的CDMA多用户检测技术[J].信息技术,2008,32(10):51-54. 被引量:2
  • 7Shor P W.Algorithms for quantum computation: discrete logarithms and factoring[C]//Proc of the 35th Annual Symp on Foundation of Computer Science.New Mexico: IEEE Computer Society Press, 1994:124-134.

二级参考文献15

  • 1陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433.
  • 2Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[A]. Proc of the 35th Annual Symposium on the Foundation of Computer Sciences[C]. Los Alamitos: IEEE Computer Society Press,1994.20-22.
  • 3Grover L K. A fast quantum mechanical algorithm for database search[A]. Proc of 28th Annual ACM Symposium on the Theory of Computing[C]. Philadelphia: ACM Press, 1996.212 - 221.
  • 4Narayanan A, Moore M. Quantum inspired genetic algorithms[A].Proce of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96)[C]. Nogaya: IEEE Press, 1996.41-46.
  • 5Han K-H. Genetic quantum algorithm and its application to combinatorial optimization problem[A]. IEEE Proc of the 2000 Congress on Evolutionary Computation[C]. San Diego: IEEE Press, 2000.1354-1360.
  • 6Yang Jun' an, et al. Research & realization of image separation method based on independent component analysis & genetic algorithm[A]. International Congress on Image and Graph 2002[C]. Hefei:SPIE Press,2002.575-582.
  • 7Grosso P B. Computer Simulation of Genetic Algorithm Adaptation:Parallel Subcomponent Interaction in a Multi-Locals Model[D]. The University of Michigan, 1985.
  • 8Verdu S. Multiuser Detection[M] .Cambridge Univ. Press, 1998.
  • 9Vamashi M, Aazhang B. Multistage Detection for Asynchronous Codedivision Multiple Access Communication[ J]. IEEE Trans. Commun., 1990,38:509 - 519.
  • 10Imre S, Balazs F. Quantum multi-user detection[ C ]. Proc. 1 st. Workshop on Wireless Services & Applications,2001:147- 154.

共引文献118

同被引文献20

  • 1谭卓英,蔡美峰,岳中琦,谭国焕,李焯芬.钻进参数用于香港复杂风化花岗岩地层的界面识别[J].岩石力学与工程学报,2006,25(z1):2939-2945. 被引量:24
  • 2张乐文,张德永,李术才,邱道宏.基于粗糙集理论的遗传-RBF神经网络在岩爆预测中的应用[J].岩土力学,2012,33(S1):270-276. 被引量:36
  • 3刘建民,曹治国.考虑钻孔速率的公路隧道围岩类别超前分类研究[J].公路交通科技,2007,24(5):99-102. 被引量:7
  • 4李术才,李树忱,张庆松,薛翊国,丁万涛,钟世航,何发亮,林玉山.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217-225. 被引量:304
  • 5Passino K M. Biomimicry of Bacterial Foraging for Distributed Optimization and Control[J]. IEEE Control Systems Magazine 2002, 22(3): 52-67.
  • 6Majhi R, Panda G, Majhi B, et al. Efficient Prediction of StockMarket Indices Using Adaptive Bacterial Foraging Optimi- zation(ABFO) and BFO Based Techniques[J]. Expert Systems with Applications, 2009, 36(6): 1-8.
  • 7Chen Hanning, Zhu Yunlong, Hu Kunyuan, et al. Cooperative Approaches to Bacterial Foraging Optimization[C]//Proc. of the 4th International Conference on Intelligent Computing: Advanced Intelligent Computing Theories and Applications. Berlin, Germany: Springer-Verlag, 2008: 541-548.
  • 8樊非之,罗毅.菌群算法的研究及改进[D].北京:华北电力大学,2010.
  • 9Han Kuk-Hyun, Kirn Jong-Hwan. Quantum-inspired Evolu- tionary Algorithm for a Class of Combinatorial Optimi- zation[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 580-593.
  • 10Han Kuk-Hyun, Kim Jong-Hwan. Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problem[C]// Proc. of Congress on Evolutionary Computation. [S. 1.]: IEEE Press, 2000: 1354-1360.

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部