期刊文献+

公共矢量的最小类内方差SVM与噪音人脸分类 被引量:1

Minimum class variance support vector machines based on common vectors for noisy face classification
下载PDF
导出
摘要 提出基于公共矢量的最小类内方差支持向量机(CV-MCVSVM),用于提高噪音人脸图像分类问题中的抗噪性能。它继承了最小类内方差支持向量机(MCVSVMs)的优点,引入了由公共矢量(CVs)构成的散度矩阵Scom,由于CVs包含了样本中的共同信息,因此CV-MCVSVM在定义中将每个样本减去了CVs的均值,保留了更多的分类信息,进一步提高了抗噪能力。给出了CV-MCVSVM的推导过程。经实验验证,在含有噪音人脸图像的分类问题中,CV-MCVSVM获得了比MCVSVMs和总间隔v-支持向量机(TM-v-SVM)更好的分类性能。 In this paper,the Minimum Class Variance Support Vector Machines Based on Common Vectors(CV-MCVSVM) as the improved version of Minimum Class Variance Support Vector Machines(MCVSVM) is presented for noisy face recognition,which inherites the advantages of MCVSVM.S com which constituted by the Common Vectors(CVs) is introduced.CVs contain the common information in the samples,so CV-MCVSVM utilizes the mean value of CVs to retain more information on the classification and improve the performance of noisy face classification.The experimental results about noisy face classification demonstrate that the proposed CV-MCVSVM has better classification performance than both MCVSVMs and TM-v-SVM.
作者 杨冰 王士同
出处 《计算机工程与应用》 CSCD 北大核心 2011年第27期164-167,202,共5页 Computer Engineering and Applications
基金 国家"十一五"科技支撑计划重大项目资助(No.2007AA1Z158) 国家自然科学基金(No.60704047) 国家自然科学基金重大研究计划(No.9082002)~~
关键词 支持向量机(SVM) 最小类内方差支持向量机(MCVSVMs) 总间隔v-支持向量机(TM-v-SVM) 判别公共矢量(DCVs) 公共矢量(CVs) 人脸识别 Support Vector Machine(SVM) Minimum Class Variance Support Machines(MCVSVMs) Total Margin v Support Vector Machine(TM-v-SVM) Discriminative Common Vectors(DCVs) Common Vectors(CVs) face recognition
  • 相关文献

参考文献12

  • 1Vapnik V.Statistical learning theory[M].New York: Springer-Verlag, 1998.
  • 2Zafeiriou S, Tefas A, Pitas I.Minimum class variance Support Vector Machines[J].IEEE Transactions on Image Processing, 2007,16(10) :2551-2563.
  • 3Cevikalp H,Neamtu M, Wilkes M, et al.Discriminative common vectors for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 ( 1 ) : 4-13.
  • 4彭新俊,王翼飞.总间隔v-支持向量机及其几何问题[J].模式识别与人工智能,2009,22(1):8-16. 被引量:10
  • 5Scholkopf A, Smola B,Muller K R.Nonlinear component analysis as a Kernel eigenvalue problem[J].Neural Comput, 1998, 10:1299-1319.
  • 6Ge Hongwei, Chung Fulai, Wang Shitong.Theoretical choice of the optimal threshold for possibilistic linear model with noisy input[J].IEEE Transactions on Fuzzy Systems, 2008, 16 (4) : 1027-1037.
  • 7Gulmezoglu M B, Dzhafarov V, Barkana A.The common vector approach and its relation to principal component analysis[J]. IEEE Trans on Speech and Audio Processing,2001,9(6).
  • 8Yang J, Zhang D, Yang J Y.A Generalised K-L expansion method which can deal with small sample size and high-dimensional problems[J].Pattern Analysis & Applications,2003,6:47-54.
  • 9Yang J, Frangi A F, Yang J, et al.KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2) :230-244.
  • 10Turk M, Pentland A P.Eigenfaces for recognition[J].Cogn Neurosci, 1991,3(1) :71-86.

二级参考文献12

  • 1Vapnik V N. The Nature of Statistical Learning Theory. New York,USA: Springer-Verlag, 1995
  • 2Vapnik V N. Statistical Learning Theory. New York, USA: Wiley, 1998
  • 3Christianini V, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge, UK : Cambridge University Press, 2002
  • 4Ripley B D. Pattern Recognition and Neural Networks. Cambridge, UK: Cambridge University Press, 1996
  • 5Jeng J T, Chuang C C, Su S F. Support Vector Interval Regression Networks for Interval Regression Analysis. Fuzzy Sets and Systems, 2003, 138(2) : 283 -300
  • 6Vapnik V N, Chapelle O. Bounds on Error Expectation for Support Vector Machines. Neural Computation, 2000, 12(9) : 2013 -2036
  • 7Chapelle O, Vapnik V N, Bousquet O, et al. Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 2002, 46 (1/2/3) : 131 -159
  • 8Scholkopf B, Smola A J, Williamson R C, et al. New Support Vector Machines. Neural Computation, 2000, 12 (6) : 1207 - 1245
  • 9Yoon M, Yun Y, Nakayama H. A Role of Total Margin in Support Vector Machines // Proc of the International Joint Conference on Neural Network. Portland, USA, 2003, III : 2049 -2053
  • 10Crisp D J, Burges C J C. A Geometric Interpretation of Nu-SVM Classifiers//Solla S A, Leen T K, Muller K R, eds. Advances in Neural Information. Cambridge, USA: MIT Press, 1999, 12: 244 - 250

共引文献9

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部