期刊文献+

时空结合的近景运动目标检测

Detection of close-range moving target using spatio-temporal characteristics
下载PDF
导出
摘要 运动目标检测是智能视频监控中图像序列分析的基础和研究热点,针对时域算法在检测近景大目标缓慢运动时,仅能检测出目标边缘、内部存在大量空洞等完整分割问题,提出了一种结合时空特征的近景运动目标检测算法。该算法在时域运动历史多模态均值背景模型的基础上,运用图像空域信息研究前/背景分割技术,通过能量最小化模型、网络构造及网络流理论,把目标检测转换成最大流/最小割问题。实验表明,该算法能在复杂环境中克服光照缓慢变化、背景扰动和摄像机轻微抖动,有效转换前/背景,准确完整地分割大运动目标。 In intelligent video surveillance field,the moving target detection is one of the fundamental tasks and an active topic for image sequence analysis.When detecting big target moving slowly in nearby view,aiming at the shortcoming of the temporal detecting algorithm which can only detect edge and internal holes of complete segmentation problems,it proposes a method of close-range moving target detection based on the space-time information.This algorithm uses spatial information of image to research foreground/background division technology,based on the multimodal mean of motion history at temporal domain.Then,by minimizing energy model,the structure of network and the theory of network flow,it converts the target detection to the problem of max-flow/min-cut.Experiment shows that the proposed algorithm can overcome gradual changes of the illumination,background disturbances and slight shaking of the camera,and update foreground/background effectively in the multimodal environment.It can detect moving targets accurately and fully.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第27期172-175,共4页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(No.2008AA8040508) 国家自然科学基金(No.10776028)~~
关键词 近景运动目标检测 多模态均值 前/背景分割 最大流/最小割 close-range moving target detection multimodal mean foreground/background segmentation max-flow/min-cut
  • 相关文献

参考文献13

  • 1Doretto G, Chiuso A, Wu Y N, et al.Dynamic textures[J].Intemational Journal of Computer Vision, 2003,51 (2) : 91-109.
  • 2Horn B K P, Schunch B G.Deterrnining optical flow[J].Artificial Intelligence, 1981,17:185-203.
  • 3代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 4Mclvor A M.Background subtraction techniques[C]//Proc of Image and Vision Computing.New Zealand:[s.n.],2000.
  • 5Sun Jian,Zhang Weiwei.Background cut[C]//Computer Vision,ECCV, 2006.
  • 6Apewokin S, Valentine B, Forsthoefel D, et al.Embedded real-time surveillance using multimodal mean background modeling[J].Em- bedded Computer Vision,2009:163-175.
  • 7Boykov Y,Kolmogorov V.An experimental comparison of min-cut/ max-flow algorithms for energy minimization in vision[J].IEEE Transactions on PAM1,2004,26(9) : 1124-1137.
  • 8Goldberg A V, Tarjan R E.A new approach to the maximum-flow problem[J].Journal of the Association for Computing Machinery, 1988,35 (4) :921-940.
  • 9Ford L R,Fulderson D R.Flows in networks[M].[S.1.]:Princeton University Press, 1962.
  • 10Stauffer C, Grimson W E L.Learning patterns of activity using real-time tracking[C]//Proc IEEE Trans on PAMI.Washinton: IEEE Computer Society, 2000,22 (8) : 747-757.

二级参考文献47

  • 1Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 2Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 3Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 4Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 5Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 6Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 7Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 8Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.
  • 9Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking[A].In:Proceedings of European Conference on Computer Vision[C],Dublin,Ireland,2000,2:336 ~ 350.
  • 10Stenger B,Ramesh V,Paragios N,et al.Topology free hidden markov models:Application to background modeling[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001,1:294 ~301.

共引文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部