期刊文献+

采用PSO和SVM预测大锻坯内部空洞锻合压下率 被引量:1

Research on forecasting methods for reduction ratio of pore closure in forging stock based on PSO and SVM
下载PDF
导出
摘要 预测大型锻件内部空洞锻合时的压下率,目前都是局限于有限元数值模拟和一些复杂的数学公式。提出一种新的预测方法,用SVM回归模型预测空洞闭合的临界压下率。选取几个影响空洞闭合的主要因素作为支持向量机的输入特征,用PSO优化SVM的核参数以提高其精度,结合LIB-SVM工具箱,训练出一个SVM模型。该模型可以快速预测锻坯内部空洞锻合临界压下率,将其预测结果与计算机模拟结果相比较,相关系数几乎达到了85%,具有较好的预测性能。 The prediction of reduction ratio for pore closure in heavy forgings stock is limited to the finite element numerical simulation and some complex mathematical formula.This paper proposes a new forecasting method,using the SVM model to predict the critical reduction ratio of pore closure.Several major factors are selected that affecting pore closure as the input features of SVM.SVM's nuclear parameters with PSO are optimized in order to enhance its accuracy,LIB-SVM toolbox is combined to train a SVM model.The model can predict the critical reduction ratio of pore closure in heavy forging quickly,compared its predictions with computer simulation results,the correlation coefficient reaches almost 85%,it has a good prediction performance.
作者 陈伟 梅益
出处 《计算机工程与应用》 CSCD 北大核心 2011年第27期243-245,共3页 Computer Engineering and Applications
基金 贵州省工业攻关项目(No.GY[2009]3040)
关键词 空洞锻合 粒子群优化 支持向量机 临界压下率 pore closure Particle Swarm Optimization(PSO) Support Vector Machine(SVM) critical reduction ratio
  • 相关文献

参考文献5

二级参考文献21

  • 1李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 2任广升,谭红,李运兴,张承鉴.镦粗过程中锻件内孔洞缺陷邻域应变分布的模拟研究[J].塑性工程学报,1994,1(3):14-19. 被引量:13
  • 3任广升,黄朝晖,白志斌.镦粗过程中孔洞应变分布的光塑性研究[J].机械工程学报,1995,31(2):93-98. 被引量:14
  • 4李琳,张晓龙.基于RBF核的SVM学习算法的优化计算[J].计算机工程与应用,2006,42(29):190-192. 被引量:41
  • 5Lombardo F,Gifford E,Shalaeva M Y.In silico ADME prediction: Data, models, facts and myths[J].Mini-Rev Med Chem, 2003,3 (8) : 861-875.
  • 6Waterbeemd H,Gifford E.ADME/T in silico modelling:Towards prediction paradise[J].Nat Rev Drug Discov,2003,2(3):192-204.
  • 7Ekins S,De Groot M J,Jones J P.Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrume P450 active sitcs[J].Drug Mctab Dispos,2001,29: 936-944.
  • 8Ekins S,Berbaum J,Harrison R K.Generation and validation of rapid computational filters for CYP2D6 and CYP3A4 [J].Drug Metab, Dispos, 2003,31 (9) : 1077-1080.
  • 9Yang Y,Pederson J O.A comparative study on feature selection in text catcgorization[C]//Proeeedings of the 14th International Conference on Machine Learning,Nashville,TN,MorganKaufmann, 1997: 412-420.
  • 10Colmenarejo G,Pedraglio A A,Lavandera J-L.Cheminformatic models to predict binding affinities to human serum albumin[J]. Med Chem,2001,44(25) :4370-4378.

共引文献58

同被引文献3

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部