期刊文献+

音乐作品风格流派的神经网络识别方法研究 被引量:7

Research on nerve network identify method of music work style genre
下载PDF
导出
摘要 音乐风格反映了音乐作品的总体基本特征,是音乐欣赏、分析、研究的基础。针对音乐风格流派分析技术的核心——旋律特征描述和特征匹配,发展了非毗邻层连接的前馈神经网络结构,给出了误差反传训练算法的分类器,并进行了实验研究。结果表明,非毗邻层连接的前馈神经网络结构有优越的识别性能和极快的收敛速度。 Music style reflects the total basic characteristic of music work,which is the foundation of music listening,anal sis and research.Aiming at the core of music style genre analytical technical:cantus characteristic description and character tic match,this paper develops the feedforward neural network structure of not-adjacent layer conjunction,gives the machi that the error margin is inverted spread the classification of training the calculate way and carries on the experimental researc The result indicates that the front feedback nerve network structure of not-adjacent layer conjunction has predominant fun tion on identify and splitting velocity on convergence.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第27期246-248,共3页 Computer Engineering and Applications
关键词 音乐 风格 特征 神经网络 music style characteristic nerve network
  • 相关文献

参考文献13

  • 1Tzanetakis G.Musical genre classification of audio signals[J].IEEE Transactions on Speech and Audio Processing, 2002, 10 (5): 293-302.
  • 2Tzanetakis G,Essl G,Cook P.Automatic musical genre classification of audio signals[C]//Proc of International Symposium on Music Information Retrieval.Bloomington, U K.. [s.n.], 2001.
  • 3Jiang Danning,Lu Lie,Zhang Hongjiang,et al.Music type classification by spectral contrast feature[C]//Proceedings of IEEE International Conference on Intelligent Computation in Manufacturing Engineering.[S.l.]:IEEE Press,2002.
  • 4Kosina K.Music genre recognition[D].Hagenberg, Germany: Technical College of Hagenberg,2002.
  • 5Grimaldi M, Kokaram A, Cunningham P.Classifying music by genre using discrete wavelet transform and a roundrobin ensemble[R]. Dublin,Ireland:University of Dublin,2003.
  • 6Mckinney M F,Breebaart J.Features for audio and music classification[C]//Proc of Conference on Music Information Retrieval. London, U K: [s.n.], 2003.
  • 7Kohavi R,Frasca B.Useful feature subsets and rough set reducts[C]//The Third Intermational Workshop on Rough Sets and Soft Computing, 1994 : 310-317.
  • 8Setiono R, Liu H.Neural-network feature selector[J].IEEE Transactions on Neural Neural Networks, 1997,8(3 ) : 654-662.
  • 9Koller D, Sahami M.Toward optimal feature selection[C]//Proceedings of the 13th Intermational Conference on Machine Learning. San Francisco : Morgan Kaufmann, 1996 : 284-292.
  • 10Li Ming,Sleep R.Genre classification via LZ78-based string kemel[C]//Proceedings of the 6th Intermational Conference on Mu- sic Information Retrieval,London,UK,2005:252-259.

同被引文献56

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部