期刊文献+

煤层气井气水两相流入动态关系研究 被引量:19

Inflow performance relationship in two-phase CBM wells
原文传递
导出
摘要 为了准确预测煤层气井流入动态关系,基于流体稳定渗流的运动方程和连续性方程,建立了煤层中气水两相渗流的数学模型和气井流入动态预测模型.采用气水两相拟压力函数,研究了两相煤层气井产能方程.结果表明:该模型考虑了煤层渗透率、表皮效应和非达西效应的影响,预测结果具有较高精度,预测值与实测值间的整体误差控制在8%以内.井底流压充分反映产能的渗流压力特征,调整井底流压,可有效增大生产压差,利于煤层中气体解吸和水相渗流,提高产能,在井底流压由5.0 MPa降为2.1 MPa后,产能由0.1 kg/s提高到0.6 kg/s.随渗透率的增大和表皮系数的减小,流入动态曲线明显向右移动,渗透率由2×10-3μm2升为2×10-2μm2时,最大气水总流量由0.205 kg/s迅速增大到1.20 kg/s.开采中,煤层水的相对渗透率不断减小,而气的相对渗透率和泄流半径逐渐增大,导致动态曲线有向左移动的趋势,但其影响并不显著. Based on the kinematic and continuing equations of the steady fluid flow, an approach was proposed to predict inflow performance relationship (IPR) for two-phase (gas and water) coalbed methane (CBM) wells. And the mathematical model of two-phase flow and IPR were developed. The function of pseudopressure was used to study the productivity equation for twophase CBM wells. The results show that the small errors of less than 8 % between the prediction and measured values are achieved due to the permeability, skin factor and non-Darcy flow. CBM productivity increases from 0.1 kg/s up to 0.6 kg/s when bottom hole pressures (BHPs) are from 5.0 MPa to 2.1 MPa. Adjusting BHP can effectively increase producing pres- sure drop, which is beneficial to gas desorption and water flow and enhance CBM production. The IPR curves move towards the right direction due to the increased permeability and de- creased skin factor. An enhanced permeability from 2 X 10 3 μm2 up to 2 X 10.2 μm2 leads to the enhanced production of gas and water from 0. 205 kg/s to 1.2 kg/s. During the pumpingproduction, the effective permeability of water decreases while the effective permeability of CBM and supply boundary increase, which makes the IPR curve move towards the left direc- tion.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2011年第4期561-565,591,共6页 Journal of China University of Mining & Technology
基金 国家科技重大专项(2009ZX05038-004) 山东省科技发展计划项目(2009GG10007008)
关键词 气水两相流 煤层气井 产能方程 流入动态 two-phase flow CBM well productivity equation inflow performance relationship
  • 相关文献

参考文献16

  • 1ARCHER R A, AGBONGIATOR E O. Correcting for frictional pressure drop in horizontal well inflow performance relationship [J]. SPE Production & Facilities, 2005, 56(2): 21-25.
  • 2JAHANBANI A, SHADIZADEH S R. Reternination of Inflow performance relationship by well testing [J]. Society of Petroleum Engineers, 2009, 56 (6) :1-11.
  • 3EBRAHIMI M, SAJEDIAN A. Use of fuzzy logic for predicting two-phase inflow performance relationship of horizontal oil wells [J]. Society of Petroleum Engineers, 2010, 57(6): 1-10.
  • 4DUONG A N. Inflow performance relationships for oil wells with rate dependent skin [J]. Society of Petroleum Engineers, 1986, 33(6);529-537.
  • 5KLLNS M A, MAJCHER M W. Inflow performance relationships for damaged or improved wells producing under solution-gas drive [J]. Journal of Petroleum Technology, 1992, 38(12):1 357-1 363.
  • 6程林松,张健琦,李忠兴,张明禄.低渗透水平气井流入动态研究[J].石油学报,2002,23(4):75-79. 被引量:5
  • 7MOHAMED E. New inflow performance relationships for solution-gas dirve oil reservoirs [J]. Society of Petroleum Engineers, 2009, 56(10): 1-20.
  • 8杨陆武,孙茂远,胡爱梅,潘军.适合中国煤层气藏特点的开发技术[J].石油学报,2002,23(4):46-50. 被引量:52
  • 9唐书恒,马彩霞,叶建平,吴建光.注二氧化碳提高煤层甲烷采收率的实验模拟[J].中国矿业大学学报,2006,35(5):607-611. 被引量:68
  • 10TANGShuheng,SUNShenglin,HAODuohu,TANGDazhen.Coalbed Methane-bearing Characteristics and Reservoir Physical Properties of Principal Target Areas in North China[J].Acta Geologica Sinica(English Edition),2004,78(3):724-728. 被引量:15

二级参考文献16

共引文献129

同被引文献241

引证文献19

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部