期刊文献+

DEM平均误差置信区间估计 被引量:2

Confidence interval estimation for DEM mean error
原文传递
导出
摘要 为了对数字高程模型(DEM)精度准确描述,研究了非参数法的DEM平均误差置信区间估计.以我国6个测区不同地形的高级星载热辐射反射辐射计(ASTER)为研究对象,通过非参数法估计DEM平均误差置信度为95%的置信区间,并与传统的t分布进行精度比较.结果表明:t分布模拟精度受误差母体分布影响较大,当误差母体近似正态分布时,其模拟精度高于非正态分布;t分布模拟精度随着采样数增多有升高趋势.无论采样数为多少,母体服从何种分布,非参数法模拟精度均高于t分布;当采样数大于10时,非参数法获取的DEM平均误差置信区间完全满足精度要求.随着采样数的增多,两种模型的置信区间宽度均大幅度减小;当采样数较少时,非参数置信区间宽度远大于t分布,表明非参数法在较少采样数获取的较高模拟精度是以较大置信区间宽度为代价.根据置信区间估计最优准则,非参数法可作为DEM平均误差置信区间估计的高效方法. In order to give DEM accuracy an accurate description, this paper developed a non- parameter method to estimate the confidence interval for DEM mean error. ASTERs of six test areas with different terrain topography were employed to comparatively analyze the simulation accuracy of the non-parameter method and the classical student t method. The results indicate that the student t method is clearly influenced by the degree of normality of the DEM error population distribution and the sampling number, i. e, with the increasing of the sampling number, the simulation accuracy is improving; the bigger the degree of the non-normal error population, the less reliable the simulation accuracy. No matter what the error population dis- tribution is and how many the sampling numbers are, the non-parameter method is more accu- rate than the student t method; when the sampling number is bigger than 10, the confidence interval of the non-parameter method completely satisfies the accuracy requirement. The confi- dence interval widths of the two methods indicate that with the increasing of the sampling num- ber, the widths become smaller; under the smaller sampling number, the non-parameter needsbigger confidence interval width to satisfy the accuracy requirement. Based on the optimal theo rem of confidence interval evaluation, the non-parameter method can be considered as an effi cient method for confidence interval estimation.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2011年第4期647-652,共6页 Journal of China University of Mining & Technology
基金 中国科学院知识创新工程项目(kzcx2-yw-429) 山东省"泰山学者"建设工程专项经费项目 国家高技术发展计划(863)项目(2008AA121305-5-2 2009AA121405) 国家海洋局海洋溢油鉴别与损害评估技术重点实验室开放基金项目(200904)
关键词 DEM 置信区间 平均误差 精度 DEM confidence interval mean error accuracy
  • 相关文献

参考文献20

  • 1GAO J. Resolution and accuracy of terrain representation by grid DEMs at a micro-scale [J]. International Journal of Geographical Information Science, 1997, 11(2):199-212.
  • 2GAO J. Impact of sampling intervals on the reliability of topographic variables mapped from grid DEMs at a micro-scale [J]. International Journal of Geographical Information Science, 1998, 12(8).. 875- 89O.
  • 3FISHER P F. Improved modeling of elevation error with geostatistics [J]. GeoInformatica, 1998, 2 (3) : 215-233.
  • 4CARLISLE B H. Modelling the spatial distribution of DEM error [J]. Transactions in GIS, 2005, 9 (4) : 521-540.
  • 5FISHER P F, TATE N J. Causes and consequences of error in digital elevation models [J]. Progress in Physical Geography, 2006, 30(4): 467-489.
  • 6DARNELL A R, TATE N J, BRUNSDON C. Improving user assessment of error implications in digital elevation models [J]. Computers, Environment and Urban Systems, 2008, 32(4) : 268-277.
  • 7LI Z L. Effects of check points on the reliability of DTM accuracy estimates obtained from experimental tests [J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(10) : 1333-1340.
  • 8DESMET P J J. Effects of interpolation errors on the analysis of DEMs [J]. Earth Surface Processes and Landforms, 1998, 22(6):563-580.
  • 9LI Z. On the measure of digital terrain model accuracy [J]. The Photogrammetric Record, 1988, 12 (72) :873-877.
  • 10HUANG Y D. Evaluation of information loss in digital elevation models with digital photogrammetric systems [J]. Photogrammetric Record, 2000, 16(95) : 781-791.

同被引文献23

  • 1汤国安,赵牡丹,李天文,刘咏梅,谢元礼.DEM提取黄土高原地面坡度的不确定性[J].地理学报,2003,58(6):824-830. 被引量:178
  • 2陈再辉,路晓峰.基于自适应抗差最小二乘的DEM数据粗差剔除[J].海洋测绘,2006,26(6):15-17. 被引量:6
  • 3汤国安,刘学军,房亮,罗明良.DEM及数字地形分析中尺度问题研究综述[J].武汉大学学报(信息科学版),2006,31(12):1059-1066. 被引量:94
  • 4陈楠,王钦敏,汤国安.基于单个栅格的DEM坡度与分辨率关系研究[J].中国矿业大学学报,2007,36(4):499-504. 被引量:8
  • 5邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2006.
  • 6STEPHEN W. Cross-validation as a means of investi-gating DEM interpolation error[J]. Computers &? Ge-osciences, 2011,37(8) ;978-991.
  • 7SAFFET E. Modeling the spatial distribution of DEMerror with geographically weighted regression: An ex-perimental study [J]. Computers Geosciences,2010,36(1): 34-43.
  • 8ZHOU Q,LIU X. Error analysis on grid basedslope and aspect algorithm [J]. PhotogrammetricEngineering and Remote Sensing, 2004,70(8):957-962.
  • 9ERSKINE R H,GREEN T R,RAMIREZ J A, etal. Digital elevation accuracy and grid cell size:effects on estimated terrain attributes [J]. Soil &Water Management Conservation, 2007,71(4):1371-1380.
  • 10Chen C F, Li Y Y.A Robust Mulfiquadric Interpolation for DEM Construction[J]. Mathematical Geosciences,2013,45(3):297-319.

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部