期刊文献+

平稳序列BMM模型与沪深股市极端风险研究 被引量:2

The Research of BMM Model for Stationary Sequence and Extreme Risk of Shenzhen and Shanghai Stock Market
原文传递
导出
摘要 基于VaR理论正态分布假设导致的尾部风险低估问题,研究了GEV分布下的BMM模型及区间关联下的极值VaR的建模,并实证分析了沪深股市极端风险.研究结果表明:BMM模型对金融风险的厚尾具有更合理的理论基础.然而,涨跌停板极大地抑制了沪深股市极值数据的异质性,形成"极值不极"现象,导致在较高置信度下BMM模型更为有效,而在较低置信度下反而存在低估问题,有效性尚不及VaR模型. To revise the shortage of model VaR under the assumption the sequence is nor- mal distribution, this paper employs BMM model to estimate extreme risk, and develops the formula for calculating Extreme-VaR, based on which the extreme risk in Shanghai and Shen-zhen stock market is explored. The results show that BMM model is more effective than VaR model to study sequences with fat tail. However, the raising limit restrains the heterogeneity of extreme values, which result in underestimation for BMM model under the condition of lower confidence level.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第18期15-23,共9页 Mathematics in Practice and Theory
基金 教育部人文社会科学研究西部和边疆地区规划基金项目:涨跌停板及其在我国股票市场有效性研究(10XJA630003 2010.5-2013.5) 中央高校基本科研业务费项目:涨跌停板对我国股市极端风险的影响分析(CDJSK100204 2010.7-2012.7)
关键词 BMM模型 极值 GEV分布 VAR BMM model extreme value GEV distribution value-at-risk
  • 相关文献

参考文献8

  • 1菲利普·乔瑞(陈跃等译).风险价值VaR[M].北京:中信出版社,2005:19-26.
  • 2Gray, B. & D. French. Empirical comparisons of distributional models for stock index returns [J]. J of Business, Finance & Accounting, 1990, 17(3): 451-459.
  • 3Amado Peiro. Skewness in financial returns [J]. J of Banking & Finance, 1999, 23(6): 847-862.
  • 4Fisher R A & Tippett L H C. Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample[M]. Procs. Cambridge Philos. Soc, 1928, 24: 180-190.
  • 5Ruey S. Tsay Analysis of Financial Time Series [M]. John Wiley & Sons, Inc. 2002.
  • 6Leadbetter M R, Linggren G, Rootzen H. Extremes and Related Properties of Random Sequences and Processes[M].New York:Springer-Verlag, 1983.
  • 7McNeil A J. Calculating quantile risk measures for financial time series using extreme value theory [J]. ASTIN Bulletin, 1998, 27(1): 117-137.
  • 8Smith R L. Maximum likelihood estimation in a class of non-regular cases[J]. Biometrika, 1985, 72(1): 67-90.

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部