期刊文献+

混沌振荡系统的空时复杂度 被引量:1

Spatiotemporal Complexity of Chaotic Oscillatory Systems
原文传递
导出
摘要 基于相轨迹随时间的变化规律,提出了混沌振荡系统空时复杂度的概念,给出了空时复杂度的定义和计算方法.定义物理意义直观明确,与Lyapunov指数计算相比,方法计算量少,便于实际应用.以Duffing振子为例,通过数值仿真与实验,研究了混沌振荡系统的空时复杂度,实验结果表明空时复杂度可以很好地刻画Duffing振子丰富的动力学特性. Based on the fact that trajectories which start as neighbors diverge away even- tually from each other in exponential fashion, spatiotemporal complexity (STC) was defined for measured the complexity of chaotic oscillatory systems. In comparison with Lyapunov exponent of simulation results, the efficiency and advantages of the proposed measure are obvious. Simulation results show that the STC can effectively character the dynamic behavior of Duffing oscillator.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第18期123-129,共7页 Mathematics in Practice and Theory
关键词 DUFFING振子 相轨迹 相空间 空时复杂度 混沌 Duffing oscillator trajectory phase space spatiotemporal complexity chaos
  • 相关文献

参考文献4

二级参考文献30

共引文献138

同被引文献16

  • 1Allen F, C arletti E & Gale, D. Money, financial stability and efficiency [ J]. Physical A, 2014, 149(1) : 100 -127.
  • 2Francisco O&Araceli N. Empirical fractal geometry analysis of some speculative financial bubbles [ J]. Physica A, 2012, 391 (12) : 5132 -5138.
  • 3Wei-Xing Zhou. Finite-size effect and the components of multifractality in financial volatility I J]. Chaos, Solitons & Fractals, 2012, 45(2): 147-155.
  • 4Ladislav Kristoufek. Measuring correlations between non-stationary series with DCCA coefficient [ J]. Physica A, 2013, (10) : 1 -10.
  • 5Guangxi Cao, Longbing Xu&Jie Cao. Multifractal detrended cross-correlations between the Chinese exchange market and stock market [J]. PhysicaA, 2012, 391(5): 4855-4866.
  • 6Richman J & Mooeman J. Physiological time-serles analysis using approximate entropy and sample entropy [ J]. Am. J. Physics, Heart Circ Physics, 2000, 278(6): 2039-2049.
  • 7Hongtao Chen & Chongfeng Wu. Forecasting volatility in Shanghai and Shenzhen markets based on muhifractal analysis [ J]. Physica A, 2011, 390(4): 2926-2935.
  • 8Barunik Jozef, Aste Tomaso, Di Matteo T&Liu Ruipeng. Understanding the source of muhifractality in financial markets [ J]. Physica A, Statistical Mechanics and its Applications, 2012, 88(17) : 174102.
  • 9张文.经济货币化进程与内生性货币供给--关于中国高M2/GDP比率的货币分析[J].金融研究,2008(2):13-32. 被引量:110
  • 10赵进文,高辉.资产价格波动对中国货币政策的影响--基于1994-2006年季度数据的实证分析[J].中国社会科学,2009(2):98-114. 被引量:131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部