期刊文献+

非负交换整半环上矩阵的正/负行列式保持问题 被引量:2

Positive/Negative Determinant Preservers for Matrices over Nonnegative Commutative Semiring without Zero Divisors
原文传递
导出
摘要 设R为非负交换整半环,用M_n(R)表示R上所有n×n矩阵构成的矩阵半环.令T是M_n(R)到其自身的线性变换,若T满足|T(X)|^+=|X|^+,■X∈M_n(R)(或|T(X)|^-=|X|^-,(?)X∈Mn(R)),称T为M_n(R)上保持正行列式(负行列式)的线性变换.刻画了n≥4时,M_n(R)上保持正行列式/负行列式的线性满射形式. Suppose R is a nonnegative commutative semiring without zero divisors, and let M~ (R) be the matrix semiring of all n x n matrices over R. A linear transformation T from Mn(R) to itself, is said to positive determinant or negative determinant preserver if |T(X)|+=|X|+,VX∈Mn(R)(orT(X)|-=|X|=,VX∈Mn(R)) forms of the surjective linear transformation on Mn (R) which preserve positive determinant / negative determinant are characterized when n ≥4 in this paper.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第18期243-247,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(10871056) 黑龙江省教育厅科学技术研究项目(12511457)
关键词 交换半环 正行列式 负行列式 保持 commutative semiring positive determinant negative determinant preserve
  • 相关文献

参考文献5

  • 1Dolinar G, Semrl P. Determinant preserving maps on matrix algebras [J]. Linear Algebra Appl, 2002, 348: 189-192.
  • 2Cao C G, Tang X M. Determinant preserving transformations on symmetric matrix spaces [J]. Electronic Journal of Linear Algebra, 2004, 11: 205-211.
  • 3Poplin P, Hartwig R. Determinantal identities over commutative semirings [J]. Linear Algebra Appl, 2004, 387: 99-132.
  • 4Beasley L B, Guterman A E, Lee S G, Song S Z. Frobenius and dieudonne theorems over semirings [J]. Linear and multilinear algebra, 2007, 55(1): 19-34.
  • 5谢源,谭宜家.关于正行列式的一个公开问题[J].福州大学学报(自然科学版),2009,37(3):305-307. 被引量:5

二级参考文献3

  • 1谢源,谭宜家.非负半环上的积和式半群[J].福州大学学报(自然科学版),2007,35(1):1-5. 被引量:1
  • 2Golan J S.Semirings and their applications[M].New York:Kluwer Academic Publishers,1999.
  • 3Poplin P L,Hartwig R E.Determinantal identities over commutative semirings[J].Linear Algebra and its Appl,2004(387):99-132.

共引文献4

同被引文献17

  • 1田正平.整数矩阵的方幂和表示[J].杭州师范学院学报,1990,20(3):6-13. 被引量:1
  • 2鲁礼勇.整系数线性方程组的整数解的判定[J].襄樊学院学报,2006,27(5):7-11. 被引量:2
  • 3史荣昌,魏丰.矩阵分析[M].北京:北京理工大学出版社.2006:302-307.
  • 4C. K. Li, N. K. Tsing. Linear preserver problems: A brief introduction and some special techniques[J]. Linear Algebra Appl, 1992, 162-164: 217-235.
  • 5S. W. Liu, D. B. Zhao. Introduction to Linear Preserver Problems[M]. Harbin: Harbin Press, 1997:1-23.
  • 6C. K. Li, S. Pierce. Linear preserver problems[J]. A- merica Mathematical Monthly, 2001, 108: 591-605.
  • 7G. Dolinar, P. Semrl. Determinant preserving maps on matrix algebras [J]. Linear Algebra Appl. , 2002, 348: 189-192.
  • 8C. G. Cao, X. M. Tang. Determinant preserving trans- formations on symmetric matrix spaces [J]. Electronic Journal of Linear Algebra, 2004, 11 : 205-211.
  • 9Poplin Phillip, Hartwig Robert. Determinantal identities over commutative semirings[J]. Linear Algebra Appl. , 2004, 387:99-132.
  • 10Beasley LeRoy, Guterman Alexander, Lee Sang-Gu, et al. Frobenius and dieudonne theorems over semirings [J]. Linear and multilinear algebra, 2007, 55 (1): 19- 34.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部