摘要
设R为非负交换整半环,用M_n(R)表示R上所有n×n矩阵构成的矩阵半环.令T是M_n(R)到其自身的线性变换,若T满足|T(X)|^+=|X|^+,■X∈M_n(R)(或|T(X)|^-=|X|^-,(?)X∈Mn(R)),称T为M_n(R)上保持正行列式(负行列式)的线性变换.刻画了n≥4时,M_n(R)上保持正行列式/负行列式的线性满射形式.
Suppose R is a nonnegative commutative semiring without zero divisors, and let M~ (R) be the matrix semiring of all n x n matrices over R. A linear transformation T from Mn(R) to itself, is said to positive determinant or negative determinant preserver if |T(X)|+=|X|+,VX∈Mn(R)(orT(X)|-=|X|=,VX∈Mn(R))
forms of the surjective linear transformation on Mn (R) which preserve positive determinant / negative determinant are characterized when n ≥4 in this paper.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第18期243-247,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(10871056)
黑龙江省教育厅科学技术研究项目(12511457)
关键词
交换半环
正行列式
负行列式
保持
commutative semiring
positive determinant
negative determinant
preserve