期刊文献+

W-50%Cu复合材料的高温变形行为及加工图 被引量:10

Hot deformation behavior and processing maps of W-50%Cu composite
下载PDF
导出
摘要 利用Gleeble-1500热力模拟试验机,在温度为650~950℃、应变速率为0.01~5 s-1、总应变量0.7的条件下,对W-50%Cu复合材料高温塑性变形过程中的动态再结晶行为及其热加工图进行了研究和分析。试验结果表明:W-50%Cu复合材料高温流动应力-应变曲线主要以动态回复和动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;在真应力-应变曲线基础上,建立的W-50%Cu复合材料高温变形本构模型较好地表征了其高温流变特性;同时,利用W-50%Cu复合材料DMM加工图分析了其变形机制和失稳机制,可确定其热加工工艺优先选择变形温度650~700℃、应变速率1~5 s-1或变形温度850~950℃、应变速率0.01~0.1 s-1。 Using a Gleeble-1500 simulator,the dynamic recrystallization behavior during high-temperature plastic deformation and processing maps of W-50%Cu composite were investigated at 650-950 ℃ with the strain rate of 0.01-5 s-1 and total strain of 0.7.The results show that the high-temperature flow stress-strain curves of W-50%Cu composite are characterized by softening mechanism of dynamic recovery and dynamic recrystallization,and the peak stress increases with decreasing deformation temperature or increasing strain rate.Based on the true stress-strain curves,the established constitutive equation represents the high-temperature flow behavior of W-50%Cu composite,and the calculated results of the flow stress are in good agreement with the high-temperature deformation experimental results.Meanwhile,the obtained processing map of dynamic materials modeling(DMM) is used to analyze the deformation mechanism and the destabilization mechanism of W-50%Cu composite,the optimal deformation processing parameters of the deformation temperatures rang and the strain rates rang are 650-700 ℃ and 1-5 s-1 or 850-950 ℃ and 0.01-0.1 s-1.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2011年第9期1-5,共5页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金(50571035) 河南科技大学博士科研启动基金项目(09001199)
关键词 W-50%Cu复合材料 高温变形 本构模型 动态再结晶 DMM加工图 W-50%Cu composite high-temperature deformation constitutive equation dynamic recrystallization DMM map
  • 相关文献

参考文献16

  • 1Kim Y D, Oh N L, Oh S T, et al. Thermal conductivity of W-Cu composites at various temperatures [ J ]. Materials Letters,2001,51 (5) :420 -424.
  • 2周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005,10(1):21-25. 被引量:64
  • 3杨明川,宋贞桢,卢柯.W-20%Cu纳米复合粉的制备[J].金属学报,2004,40(6):639-642. 被引量:28
  • 4黄树海,赵祖德,夏志新,蔡海艳,康凤,胡传凯,舒大禹.AZ80合金高温变形行为及加工图[J].稀有金属材料与工程,2010,39(5):848-852. 被引量:19
  • 5范永革,汪凌云.AZ31镁合金的中温流变失稳特征[J].中国有色金属学报,2005,15(10):1602-1606. 被引量:16
  • 6Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metall, 1966, 14:1136 -1138.
  • 7Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[ J]. J Appl Phys, 1944, 15 (1) :22 -27.
  • 8Rao K P, Doraivelu S M, Roshan H M, et al. Deformation processing of an aluminum alloy containing particles: Studies on AI-5 Pct Si alloy 4043 [ J ]. Metallurgical and Materials Transactions A, 1983, 14 ( 8 ) : 1671 - 1679.
  • 9Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation : Forging of Ti-6242 [ J]. Metallurgical and Materials Transactions A, 1984, 15(10) :1883 - 1892.
  • 10Prasad Y V R K, Sasidhara S. Hot Working Guide: A Compendium of Processing Maps[ M]. Materials Park, OH: ASM International, 1997.

二级参考文献127

共引文献295

同被引文献113

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部