期刊文献+

高维Wiener sausage的强逼近 被引量:1

Strong approximation of high dimensional Wiener sausage
原文传递
导出
摘要 本文研究了四维及四维以上的Wiener sausage的体积,得到它们可以由一维Brown运动强逼近.作为应用,推出了弱收敛和重对数率. In this paper, we study the volume of Wiener sausage in R^d for d ≥ 4. We obtain that it can be strongly approximated by a one-dimensional standard Brownian motion. As an application, we give the weak convergence and laws of the iterated logarithm.
作者 王艳清
出处 《中国科学:数学》 CSCD 北大核心 2011年第9期789-796,共8页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10871153) 中央高校基本科研业务费专项资金(批准号:2011084 2010014)资助项目
关键词 WIENER SAUSAGE 强逼近 Skorohod 嵌入定理 Wiener sausage, strong approximation, Skorohod's representation theorem
  • 相关文献

参考文献17

  • 1Ito K, Mackean H P Jr. Diffusion Processes and Their Sample Paths. New York: Springer, 1974.
  • 2Le Gall J F. Fluctuation results for the Wiener sausage. Ann Probab, 1998, 16:991 -1018.
  • 3Bass R F, Rosen J. An almost sure invariance principle for the range of planar random walks. Ann Probab, 2005, 33: 1856 -1885.
  • 4Dembo A, Zeitouni O. Large Deviations Techniques and Applications. New York: Springer, 1998.
  • 5Le Gall J F. Sur la saucisse de Wiener et les points multiples du mouvement brownien. Ann Probab, 1986, 14: 1219- 1244.
  • 6Le Gall J F. Proprietes d'intersection des marches aleatoires. I. Convergence vers le temps local d'intersection. Comm Math Phys, 1986, 104:471-507.
  • 7Spitzer F. Electrostatic capacity, heat flow and Brownian motion. Z Wahr Verw Geb, 1964, 3:110 -121.
  • 8Gao F Q, Wang Y Q. Moderate deviations and laws of the iterated logarithm for the volume of the intersection of high dimensional Wiener sausages. Electron J Prob, 2009, 14:1900 -1935.
  • 9Hamana Y. An almost sure invariance principle for the range of random walks. Stoc Proc Appl, 1998, 78:131 143.
  • 10Jain N C, Pruitt W E. The law of the iterated logarithm for the range of random walk. Ann Math Stat, 1972, 43: 1692- 1697.

同被引文献15

  • 1It5 K, Jr McKean H P. Diffusion Processes and Their Sample Paths. New York: Springer, 1974.
  • 2Le Gall J F. Fluctuation results for the Wiener sausage. Ann Probab, 1988, 16:991-1018.
  • 3Cski E, Hu Y. Strong approximations of three-dimensional Wiener sausages. Acta Math Hungar, 2007, 114:205-226.
  • 4van den Berg M, Bolthausen E, Den Hollander F. Moderate deviations for the volume of the Wiener sausage. Ann Math, 2001, 153:355-406.
  • 5Bolthausen E. On the volume of the Wiener sausage. Ann Probab, 1990, 18:1576-1582.
  • 6Donsker M D, Varadhan S R S. Asymptotics for the Wiener sausage. Comm Pure Appl Math, 1975, 28:525-565.
  • 7van den Berg M. On the expected volume of intersection of independent Wiener sausages and the asymptotics behaviour of same related integrals. J Funct Anal, 2005, 222:114-128.
  • 8van den Berg M, Bolthausen E, Den Hollander F. On the volume of the intersection of two Wiener sausages. Ann Math, 2004, 159:741-782.
  • 9KSnig W, MSrters P. Brownian intersection local times: Upper tail asymptotics and thick points. Ann Probab, 2002, 30:1605-1656.
  • 10Cao F Q, Wang Y Q. Moderate deviations and laws of the iterated logarithm for the volume of the intersections of Wiener sausages. Electron J Probab, 2009, 14:1900-1935.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部