摘要
针对学生综合素质评估特点和现有评估方法存在的问题,建立了学生综合素质评估的层次朴素贝叶斯网络聚类方法,这种方法不需要许多例子,甚至在没有例子的情况下也能够进行规则提炼和预测.实验结果显示,层次朴素贝叶斯网络聚类方法具有良好的预测准确性,这将使基于层次朴素贝叶斯网络聚类的学生综合素质评估更加可靠.
The student comprehensive quality assessment is one effective way for testing student overall level of development.A hierarchical naive Bayesian network clustering method is developed for student comprehensive quality assessment based on the features of student comprehensive quality assessment and the problems in existing assessment methods.This method not need many examples.Even if no example,it can also extracte rules and do prediction.The experimental results show that the method has very good prediction accuracy so that it will be more reliable to assess student comprehensive quality.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2011年第3期49-53,共5页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(60675036)
教育部人文社科基金资助项目(10YJA630154)
上海市教委重点学科建设项目(J51702)
上海市教委科研创新重点项目(09zz202)
关键词
学生综合素质评估
指标体系
层次朴素贝叶斯网络
聚类
student comprehensive quality assessment
assessment
hierarchical naive Bayesian network
clustering