期刊文献+

学生综合素质评估的层次贝叶斯网络聚类方法 被引量:4

The clustering method of hierarchical naive Bayesian network for student comprehensive quality assessment
下载PDF
导出
摘要 针对学生综合素质评估特点和现有评估方法存在的问题,建立了学生综合素质评估的层次朴素贝叶斯网络聚类方法,这种方法不需要许多例子,甚至在没有例子的情况下也能够进行规则提炼和预测.实验结果显示,层次朴素贝叶斯网络聚类方法具有良好的预测准确性,这将使基于层次朴素贝叶斯网络聚类的学生综合素质评估更加可靠. The student comprehensive quality assessment is one effective way for testing student overall level of development.A hierarchical naive Bayesian network clustering method is developed for student comprehensive quality assessment based on the features of student comprehensive quality assessment and the problems in existing assessment methods.This method not need many examples.Even if no example,it can also extracte rules and do prediction.The experimental results show that the method has very good prediction accuracy so that it will be more reliable to assess student comprehensive quality.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期49-53,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(60675036) 教育部人文社科基金资助项目(10YJA630154) 上海市教委重点学科建设项目(J51702) 上海市教委科研创新重点项目(09zz202)
关键词 学生综合素质评估 指标体系 层次朴素贝叶斯网络 聚类 student comprehensive quality assessment assessment hierarchical naive Bayesian network clustering
  • 相关文献

参考文献8

二级参考文献25

共引文献37

同被引文献52

  • 1郝家林,邱成,徐德蜀.中国职业安全的现实问题[J].中国安全科学学报,2005,15(12):37-41. 被引量:9
  • 2李旭升,郭耀煌.扩展的树增强朴素贝叶斯分类器[J].模式识别与人工智能,2006,19(4):469-474. 被引量:6
  • 3姜福川,何学秋,聂百胜.企业员工安全文化素质的层次分析[J].中国安全科学学报,2006,16(8):72-77. 被引量:8
  • 4唐杰,梁邦勇,李涓子,王克宏.语义Web中的本体自动映射[J].计算机学报,2006,29(11):1956-1976. 被引量:98
  • 5ZHANG G P. Neural networks for elassifieation..a survey[J]. IEEE Transactions on Neural Networks,2000,30(4) :117-124.
  • 6VVPNIK V N. Statistical learning theory[ M]. New York .. Springer, 1998 : 28-76.
  • 7SCOTT C,SALZBERG S. A weighted nearest neighbor algorithm for learning with symbolic features[J]. Machine Learning, 1993,10(1) :57-78.
  • 8FRIEDMAN N,GEIGER D,GOLDSZMIDT M. Bayesian network elassifiers[J]. Machine Learning,1997,29(2/3) :131-161.
  • 9QUINLAN J R. Induction of decision trees[J]. Machine Learning, 1986,1 (1) :81-106.
  • 10DOMINGOS P,PAZZANI M. On the optimality of the simple Bayesian classifier under zero-one loss[J]. Machine Learning, 1997,29 (2/3) :103-130.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部