期刊文献+

氯化钠促进溶菌酶聚集机制的分子动力学研究 被引量:4

Mechanism study of sodium chloride on lysozyme aggregation investigated by molecular dynamics simulation
下载PDF
导出
摘要 氯化钠能够在一定的条件下促进溶菌酶发生聚集,但其具体的作用机制目前还尚不明确.采用分子动力学模拟的方法研究了鸡溶菌酶单体在含500mmol/L NaCl和不含NaCl两种体系中的结构变化.模拟的结果表明:NaCl能够使溶菌酶聚集关键区域(40~110位残基)内二硫键cys76-cys94的结合强度减弱,同时破坏了该区域内的氢键网络,从而导致了蛋白结构的不稳定性;另一方面,NaCl也促使疏水核心发生了一定的扩张,使疏水核心内氨基酸残基的结合变得更加松散,从而促进了溶菌酶分子间的相互作用. Sodium chloride(NaCl) could induce lysozyme aggregation under some conditions,but the detail mechanism has been poorly understood.In this study,performed 10 ns molecular dynamic simulations to investigate the structure changes of chicken lysozyme monomer when treated with 500 mmol/L NaCl.The simulation results indicated that NaCl could weaken the disulfide bond cys76-cys94 as well as the hydrogen bonding network in the aggregation critical region,which might lead instability of the lysozyme structure.In addition,results also showed that the hydrophobic core had an apparent expanding tendency when treated with NaCl,which might promote the intermolecular interactions between lysozyme monomers.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期117-121,共5页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(30970152) 辽宁省教育厅优秀人才基金资助项目(2009R26)
关键词 溶菌酶 氯化钠 淀粉样聚集 分子动力学模拟 lysozyme sodium chloride amyloid aggregation molecular dynamics simulation
  • 相关文献

参考文献19

  • 1ROSS C A,POIRIER M A. Protein aggregation and neurodegenerative disease[J]. Nature Med,2004,10:10- 17.
  • 2STEFANI M. Protein misfolding and aggregation:new examples in medicine and biology of the dark side of the protein world[J].Biochim Biophys Aeta, 2004,1739 ( 1 ) : 5-25.
  • 3李文涓,李芳,唐燕红,黄波,曾成鸣.溶液中金属盐对溶菌酶高级结构的影响[J].化学研究与应用,2009,21(3):423-426. 被引量:6
  • 4GILl.MORE J D,BOOTH D R, MADHOO S,et al. Hereditary renal amyloidosis associated with variant lysoayzme in a large English family[J]. Nephrol Dial Transplant, 1999,14 ( 11 ):2639-2644.
  • 5PEPYS M B, HAWKINS P N, BOOTH D R, et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis[J]. Nature,1993,362(6420):553- 557.
  • 6CLAYTON I. H, JOHN R C, AMANDA M B, et al. Supersaturated lysozyme solution structure studied by chemical crosslinking[J].Acta Cryst,2005,61(6):813- 818.
  • 7戴国亮,胡文瑞.NaCl对液-液扩散法生长溶菌酶晶体的影响[J].化学学报,2003,61(4):520-525. 被引量:6
  • 8HANSSON T,OOSTENBRINK C,VAN GUNSTEREN W. Molecular dynamics simulations[J].Curr Opin Struct Biol, 2002, 12(2) :190-196.
  • 9YU Y, WANG Y, HE J, et al. Structural and dynamic properties of a new amyloidogenic chicken cystatin mutant II08T[J]. J Biomol Struct Dyn,2010,27(5):0739-1102.
  • 10HESS B, KUTZNER C, LINDAHL E. GROMACS 4; algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. J Chem Theory Comput,2008,4(3):435- 447.

二级参考文献32

  • 1Ross C A, Poirier M A. Protein aggregation and neurodegenerative disease [ J]. Nature Med. , 2004,10 : S10-S17.
  • 2Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world [ J ]. Biochim. Biophys. Acta., 2004,1739 : 5-25.
  • 3Guijarro J I, Sunde M, Jones J, et al. Amyloid fibril formation by an SH3 domain [ J ]. Proc. Natl. Acad. Sci. USA, 1998,95:4224-4228.
  • 4Frare E, de Laureto P P, Zurdo J, et al. A highly amyloidogenic region of hen lysozyme [J]. J. Mol. Biol..2004.340 : 1153-1165.
  • 5Hoyer W, Antony T, Chemy D, et al. Dependence of α-synuclein aggregate morphology on solution conditions [J].J. Mol. Biol. ,2002,322:383-393.
  • 6Fondrich M. Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils [ J ]. J. Mol. Biol. , 2007,365 : 1266-1270.
  • 7Zhang Y, Cremer P S. Interactions between macromolecules and ions:the Hofmeister series [ J ]. Curt. Opin. Chem. Biol. ,2006,10:658-663.
  • 8Sikkink L A, Ramirez-Alvarado M. Salts enhance both protein stabilit and amyloid formation of an immunoglobulin light chain [ J ]. Biophy. Chem. 2008, 135:25-31.
  • 9Michinomae, M.; Mochizuki, M.; Ataka, M. J. Cryst. Growth 1999, 197, 257.
  • 10Weber, P. In Advances in Protein Chemistry, Vol. 41, Eds.:Afinsen, C. B.; Richards, F. M.; Edsal, J. T.; Eisenberg, D.S., Academic Press, New York, 1991, p. 63.

共引文献9

同被引文献41

  • 1曹绪龙,李阳,蒋生祥,孙焕泉,窦立霞.驱油用聚丙烯酰胺溶液的界面扩张流变特征研究[J].石油大学学报(自然科学版),2005,29(2):70-72. 被引量:15
  • 2张春荣,李振泉,罗澜,张路,宋新旺,曹绪龙,赵濉,俞稼镛.氧乙烯数对辛基苯酚聚氧乙烯醚表面扩张粘弹性质的影响[J].物理化学学报,2007,23(2):247-252. 被引量:12
  • 3张磊,王晓春,宫清涛,罗澜,张路,赵濉,俞稼镛.空气/水界面2,5-二丙基-4-十一烷基苯磺酸钠的表面动态扩张流变性质[J].物理化学学报,2007,23(10):1652-1656. 被引量:22
  • 4ELISABETTA B, GIOVANNI F, CI.AUDIO F, et al. On the stereochemistry of the baker's yeast-mediated reduction of regioisomeric unsaturated aldehydes examples of enantioselectivity switch promoted by substrate-engineering[J]. J Mol Catal B Enzym, 2012,84 : 94- 101.
  • 5ENAS T S, TAKUYA T, NOBUYOSHI N. Catalytic activity of baker's yeast in a mediatorless microbial fuel cell[J]. Bioelectroehemistry, 2012,86 : 97-101.
  • 6MADHURESH K S, SOMASHEKAR R B, ANISH K, et al. Chemo-enzymatic synthesis of optically pure rivastigmine intermediate using alcohol dehydrogenase from baker's yeast[J]. J Mol Catal B Enzym, 2013,91 : 87-92.
  • 7VANESSA D S, BORIS U S, MARIA DA G N. Asymmetric reduction of (4R)-(-)-carvone catalyzed by baker's yeast in aqueous mono- and biphasic systems[J]. J Mol Catal B Enzym, 2012,77: 98-104.
  • 8PAULA V P,CSABA P,MONICA I T,et al. Baker's yeast-mediated synthesis of (R)- and(S)-heteroaryl-ethane-1,2-diols[J]. Tetrahedron Asymmetry, 2008,19 : 1959-1964.
  • 9XUE L,ZHOU D J, TANG L, et al. The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer-metal complex, silica-supported chitosancobah complex[J]. React Funct Polym, 2004,58 :117-121.
  • 10戴大章,夏黎明.微水相中改性Ultrastable-Y分子筛固定化脂肪酶拆分(R,S)-2-辛醇[J].高等学校化学学报,2007,28(12):2307-2310. 被引量:5

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部