期刊文献+

一种海量数据挖掘的有效方法 被引量:2

An Availability Measure of Data Mining on Mass Data
下载PDF
导出
摘要 对大型数据库中海量数据进行数据挖掘的方法进行研究,提出一种对海量数据进行数据挖掘的有效方法,该方法实现了如何采用粒子群优化算法对海量数据进行优化划分,并且采用改进的Apriori算法解决Apriori算法产生大量候选项集和多次扫描数据库的缺点。从而解决海量数据挖掘的时间和空间复杂度过高的难点。 Through researching the measure of datamining on mass data in large database,this paper proposed an availability measure of datamining on mass data,this measure have achieved how to adopt the particle swarm optimization algorithm to partition the mass data optimization,and adopt an improved Apriori algorithm which resolve the shortcomings of Apriori algorithm,including generating a large number of candidate itemsets and scanning the database many times,so the new algorithm improves the speed and efficiency of datamining on mass data.
作者 陈建国
出处 《软件》 2011年第5期65-66,70,共3页 Software
基金 国家自然科学基金资助项目(60803095)
关键词 数据挖掘 PSO算法 关联规则 Data Mining Particle Swarm OptimizationAlgorithm Association Rule
  • 相关文献

参考文献7

二级参考文献24

  • 1冯志新,钟诚.基于FP-tree的最大频繁模式挖掘算法[J].计算机工程,2004,30(11):123-124. 被引量:18
  • 2郭玉滨.基于聚类的周期关联规则的数据挖掘[J].菏泽师专学报,2004,26(4):26-29. 被引量:1
  • 3郑吉平,秦小麟.数据挖掘中采样技术的研究[J].系统工程与电子技术,2005,27(11):1946-1949. 被引量:5
  • 4张文宇,张铭华.基于面向属性泛化及信息增益的数据挖掘方法研究[J].计算机应用,2006,26(4):861-863. 被引量:2
  • 5MacQueen J. Some methods for classification and analysis of multi-variate observations[C]//Proceedings of the 5th Berkeley Symposiumon Mathematical Statistics and Probability, 1967.
  • 6Dhillon I, Guan Y, Kogan J. Refining clusters in high dimensional data[C] // Arlington: The 2nd SIAM ICDM, Workshop on Clustering High Dimensional Data, 2002.
  • 7Zhang B. Generalized K- harmonic means: dynamic weighting of data in unsupervised learning[C]//Chicago:Proceedings of the 1st SIAM ICDM,2001.
  • 8Pelleg D,Moore A. X-means: extending K-means with efficient estimation of the number of the clusters[C]// Proceedings of the 17th ICML, 2000.
  • 9Sarafis I,Zalzala A M S, Trinder PW. A genetic rule- based data clustering toolkit[C]//Honolulu: Congress on Evolutionary Computation(CEC), 2002.
  • 10Strehl A, Ghosh J. A scalable approach to balanced, high-dimensional clustering of market baskets[C]..Proceedings of the 17th International Conference on High Performance Computing, Bangalore; Springer LNCS, 2000:525-536.

共引文献25

同被引文献26

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部