期刊文献+

飞轮储能系统多PI控制器参数优化 被引量:4

Parameter optimization of FESS PI controllers
下载PDF
导出
摘要 对飞轮储能系统(FESS)的有功和无功PI控制器参数优化进行了研究,提出了应用加入模拟退火思想的改进粒子群优化(AIPSO)算法优化FESS有功和无功多PI控制器参数。该算法在混沌初始化、迭代中加入混沌扰动和自适应调整惯性权重系数的改进粒子群优化算法基础上,引入模拟退火思想,既能限制位置更新,又能跳出局部最优解,具有更高的效率。以有功功率和电压偏差的ITAE指标的和最小为目标函数,应用AIPSO优化FESS的多PI控制器参数,并以FESS接入4机系统为例,通过非线性仿真验证了优化结果的有效性。 AIPSO(Annealing-added Improved PSO) algorithm is proposed to optimize the parameters of active and reactive power PI controllers of FESS(Flywheel Energy Storage System),which,based on the improved PSO(adding the chaos disturbance and adaptive inertia weight factor into its chaotic initialization and iteration),adopts the concept of simulated annealing to raise its efficiency by limiting the location updating and avoiding the local optimal solution. The parameters of muhi-PI controller in FESS are optimized by AIPSO,which makes the sum of deviation ITAEs of active power and voltage lowest as its objective function. The nonlinear simulation for a four-machine power system with a FESS verifies its effectiveness.
出处 《电力自动化设备》 EI CSCD 北大核心 2011年第10期65-69,共5页 Electric Power Automation Equipment
基金 中央高校基本科研业务费专项资金资助项目(2010-B05814)~~
关键词 飞轮储能系统 PI控制器 粒子群优化 算法 双馈电机 优化 设计 FESS PI controller PSO algorithms DFIM optimization design
  • 相关文献

参考文献22

  • 1AKAGI H,SATO H. Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system [J]. IEEE Trans Power Elect,2002,17(1): 109-116.
  • 2WANG M H, CHEN H C. Transient stability control of muhi -machine power systems using flywheel energy injection[J]. IEE Proceedings on Generation,Transmission and Distribution,2005, 152(5) :589-596.
  • 3李刚,程时杰,文劲宇,潘垣.利用柔性功率调节器提高电力系统稳定性[J].中国电机工程学报,2006,26(23):1-6. 被引量:31
  • 4KOYANAGI K,FUJIMITU M,KOMATSU T. Analytical studies on power system dynamic stability enhancement by doubly-fed adjustable speed machine[C]//Power System Technology,Proceedings Power Con 2000 International Conference. Perth,Australia: IEEE,2000 : 1281-1286.
  • 5史林军,陈中,王海风,唐国庆.应用飞轮储能系统阻尼电力系统低频振荡[J].电力系统自动化,2010,34(8):29-33. 被引量:19
  • 6ASTROM K J,HAGGLUND T. PID controllers:theory,design,and tuning[ M ]. New York, USA : Inst Rument Society of American, 1995:59-70.
  • 7SALMAN T,BEHROOZ N ,HAMID A T. A novel algorithm for designing the PID controllers of high-speed flywheels for traction applications[C]//Vehicle Power and Propulsion Conference, 2007,VPPC 2007. Hyogo,Japan:IEEE,2007:574-579.
  • 8LANSBERRY J E ,WOZNIAK L. Adaptive hydro-generator governor tuning with a genetic algorithm[J]. IEEE Trans on Energy Conversion, 1994,9( 1 ) : 179-183.
  • 9KENNEDY J,EBERHART R C. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks. Perth,Australia:IEEE, 1995 : 1942-1948.
  • 10YOSHIDA H,KAWATA K. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. IEEE Transactions on Power Systems,2000,15(4): 1232-1239.

二级参考文献117

共引文献446

同被引文献43

  • 1齐建玲,王江.一种新型模糊PID控制器[J].仪器仪表学报,2001,22(z1):72-74. 被引量:4
  • 2肖龙,汤恩生.电机控制系统PID参数的遗传算法优化[J].航天返回与遥感,2006,27(2):34-37. 被引量:9
  • 3吴红斌,杨仪松,丁明,张一山.遗传算法在UPFC的PID控制器参数优化中应用[J].电力自动化设备,2007,27(2):24-27. 被引量:7
  • 4HESPANHA J P, NAGHSHTABRIZI P, XU Yong-gang. A survey of recent results in network control systems [ J ]. Proeeoclings of 'the IEEE,2007,95( 1 ) : 138-162.
  • 5WALSH G C, YE Hong. Scheduling of networked control systems [J]. IEEE Control Systems,2001,21 (1):57-65.
  • 6JIANG Chong, ZHANG Qing-ling, CAI Min. Hoo control of net- worked control systems with state quantization [ J ]. International Journal of Systems Science,2011,42(6) :959-966.
  • 7PAN I, DAS S, GUPTA A. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with rondom time delay[J]. ISA Transactions,2011,50( 1 ) :28-36.
  • 8SUN Jun, FENG Bin, XU Wen-bo. Particle swarm optimization with particles having quantum behavior [ C ] //Proc of Congress on Evolu- tionary computation. Piscataway: IEEE Press,2004 : 325- 331.
  • 9KARABOGA D, BASTURK B. On the performance of artificial bee colony( ABC ) algorithm [ J ]. App{ied Soft Computing, 2008,8 ( 1 ) : 687-689.
  • 10ZHU Guo-pu, KWONG S. Gbest-guided artificial bee colony algo- rithm for numerical function optimization [ J ]. Applied Mathem- atics and Computation,2010,217(7) :3166-3173.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部