期刊文献+

基于事件驱动的车型参数主题爬虫

Topic Crawler of Car Parameters Based on Event Driven
下载PDF
导出
摘要 网络上的大量数据都隐藏在深层网络中,普通的主题爬虫只能抓取表层数据,而对深层数据的抓取则力不从心。通过建立模拟事件驱动模型,采用基于链接的BM改进过滤算法和基于向量空间模型的内容过滤算法,结合汽车车型参数主题,利用Htmlparser解析动态生成的页面,对其进行结构化处理后将数据存储于索引数据库中,由此实现车型信息的自动抽取和解析。实验结果表明,该系统模型针对同领域数据具有良好的事件触发适应性和高过滤准确率。 Large amounts of data on the Internet were hidden in the deep Web. Traditional topic crawler could only get surface data, and crawl the deep data was powerless. This paper established simulation model of Event-Driven, Used improved filtering algorithm based on BM by links, and content filtering algorithm based on VSM(vector space model), with model parameters of car, used Htmlparser to analysis dynamically generated pages, processed their structures to store in database, thus achieve extraction and parsing of car's information. The results of experimental show that the model for the same field datas has a good event trigger adaptability and high filtering accuracy.
出处 《计算机系统应用》 2011年第10期198-201,共4页 Computer Systems & Applications
基金 国家自然科学基金(50775070) 湖南省科技厅项目(2009FJ4055) 湖南省教育教育厅项目(10K023)
关键词 事件驱动 主题爬虫 网络爬虫 车型参数 AJAX event-driven topic crawler crawler car parameters Ajax
  • 相关文献

参考文献9

  • 1周立柱,林玲.聚焦爬虫技术研究综述[J].计算机应用,2005,25(9):1965-1969. 被引量:156
  • 2刘金红,陆余良.主题网络爬虫研究综述[J].计算机应用研究,2007,24(10):26-29. 被引量:132
  • 3曾伟辉,李淼.深层网络爬虫研究综述[J].计算机系统应用,2008,17(5):122-126. 被引量:39
  • 4Alvarez M, Raposo J, Pan A, Cacheda F, Bellas F, Cameiro V. Deep Bot: A focused Crawler for Accessing Hidden Web Content. ACM, 2007. 18-25.
  • 5EI-Desoudy AI, Ali HA, EI-Ghamrawy SM. An Automatic Label Extraction Technique for Domain: Specific Hidden Web Crawling, IEEE on Computer Engineering and System, 2006,26(5):454-459.
  • 6Kumar M, Vig R. Design of Core: context ontology rule enhanced focused web crawler.International Conference on Advances in Computing, Communication and Control Proc., New York, NY: ACM, 2009: 494-497.
  • 7王辉,刘艳威,左万利.使用分类器自动发现特定领域的深度网入口(英文)[J].软件学报,2008,19(2):246-256. 被引量:14
  • 8Somboonviwat K. Simulation Study of Language Specific Web Crawling, Institute of Industrial Science, University of Tokyo. 2005(5):57-62.
  • 9Pant G, Srinivasan P. Link Contexts in Classifier-Guided Topical Crawlers. IEEE Trans. on Knowledge and data Engineering, 2006,18(1): 107-122.

二级参考文献98

共引文献311

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部