期刊文献+

基于粒子滤波的行人跟踪研究及其性能分析 被引量:1

The Research of Pedestrian Tracking and Its Performance Analysis based on Particle Filter
下载PDF
导出
摘要 智能监控系统中的行人跟踪功能在很大程度上能够减轻工作人员的大量眼力工作,通过智能的方式自主地跟踪用户感兴趣的目标。在视频监控环境的基础上,利用改进的粒子滤波器,设计了一个行人跟踪系统,并使其具有系统性能分析的功能。通过使用Mean Shift算法进行目标位置的预估计和多特征融合的方式使该系统在视频背景复杂的情况下能够实现对行人的稳定跟踪。并在实际应用中,分析了在遮挡情况下,行人跟踪效果差的原因,并予以改进。在Visualc++集成开发环境中,基于OpenCV和MATLAB编程实现了系统,能够实时地对目标进行跟踪,并对跟踪结果进行反馈。 The functionality of pedestrian tracking in intelligence supervisory system can automatically track the interesting target, needing little human effort. Based on the video surveillance system, this paper designs and implements a pedestrian tracking system which leverages the improved Particle Filter method to track pedestrian. In addition, the system could analyze and evaluate the tracking performance. It leverages the approach of pre-es- timation and multi-feature fusion by means of Mean Shift to achieve a stable pedestrian tracking in the complex backgroud.This article also analyzes the cause of poor tracking performance in the case of shelter, and improves it. This system is implemented in IDE Visual C++, with OpenCV and MATLAB. Experiment results show that it can carry on feedback on the tracking result, and its tracking performance achieves the real-time level.
作者 朱然 马培军 苏小红 ZHU Ran, MA Peijun, SU Xiaohong (School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)
出处 《智能计算机与应用》 2011年第2X期14-19,共6页 Intelligent Computer and Applications
关键词 智能监控系统 粒子滤波器 多特征融合 系统性能评价 OPENCV Intelligence Supervisory system Particle Filter Multi-feature Fusion Performance Evaluation OpenCV
  • 相关文献

参考文献8

  • 1DONG Huiying,CAO Bin,YANG Yueping.Application of par-ticle filter for target tracking in wireless sensor networks. International Conference on Communications and Mobile Com-puting . 2010
  • 2RYU H R,HUBER M.A particle filter approach for multi-t-arget tracking. Proceedings of the 2007 IEEE/RSJ Internat-ional Conference on Intelligent Robots and System . 2007
  • 3WANG Fasheng,LIN Yuejin.Improving particle filter with anew sampling strategy. International Conference on ComputerScience&Education . 2009
  • 4高建坡,韦志辉,孟迎军,吴镇扬.基于均值移动确定性漂移的改进CONDENSATION人脸跟踪[J].光电工程,2009,36(2):137-142. 被引量:2
  • 5HAN Hua,DING Yongsheng,HAO Kuangrong.A new immuneparticle filter algorithm for tracking a moving target. Intern-ational Conference on Natural Computation . 2010
  • 6刘晓冬,苏光大,周全,田超.一种可视化智能户外监控系统[J].中国图象图形学报(A辑),2000,5(12):1024-1029. 被引量:33
  • 7周小四,杨杰,朱一坦.用于监控智能报警系统的图像识别技术[J].上海交通大学学报,2002,36(4):498-498. 被引量:21
  • 8王玉茹.基于粒子滤波器的视频目标跟踪关键技术及其应用研究[D]哈尔滨工业大学,哈尔滨工业大学2010.

二级参考文献17

  • 1Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Proeessing(S1053-587X), 2002, 50(2): 174-188.
  • 2Candy J W. Bootstrap particle filtering [J]. IEEE Signal Processing Magazine(S1053-5888), 2007, 24(4): 73-85.
  • 3Isard M, Blake A. Visual tracking by stochastic propagation of conditional density [C]// Proceedings of European Conference on Computer Vision, Cambridge, UK, Apr 15-18, 1996. Springer, 1996, 1: 343-356.
  • 4Isard M, Blake A. CONDENSATION-conditional density propagation for visual tracking [J]. International Journal of Computer Vision(S0920-5691), 1998, 29(1): 5-28.
  • 5Isard M, Blake A. ICONDENSATION: Unifying low-level and high-level tracking in a stochastic framework [C]// Proceedings of European Conference on Computer Vision, Freiburg, Germany, Jan 2-6, 1998. Springer, 1998, 1: 893-908.
  • 6XU Xin-yu, LI Bao-xin. Adaptive Rao-Blackwellized particle filter and its evaluation for tracking in surveillance [J]. IEEE Transactions on Image Processing(S1057-7149), 2007, 16(3): 838-849.
  • 7CHENG Chang, Ansari R. Kernel particle filter for.visual tracking [J]. IEEE Signal Processing Letters (S1070-9908), 2005, 12(3): 242-245.
  • 8LI Yuan, Ai Hai-zhou, Yamashita T, et al. Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Life Spans [J]. IEEE Transactions on Pattern Analysis and Machine IntelHgenee(S0018-9340), 2008, 30(10): 1728-1740.
  • 9CHANG Wen-yah, CHEN Chu-song, JIAN Yong-dian. Visual Tracking in High-Dimensional State Space by Appearance-Guided Particle Filtering [J]. 1EEE Transactions on Image Processing(S1057-7149), 2008, 17(7): 1154-1167.
  • 10Bregonzio M, Taj M, Cavallaro A. Multi-modal particle filtering tracking using appearance motion and audio likelihoods [C]// IEEE International Conference on Image Processing, San Antonio, TX, Sept 16 -Oct 19, 2007. Washington D C, USA: IEEE, 2007, 5: 33-36.

共引文献53

同被引文献9

  • 1Curio C, Edelbrunner J, Kalinker T, et al. Walking pe- destrian recognition [ J ]. IEEE Transactions on Intelli- gent Transportation Systems, 2000, 1 (3) : 155 - 163.
  • 2Wu B, Nevatia R. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors [ J ]. International Journal of Computer Vision, 2007, 75 (2) :247 - 266.
  • 3Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning [ C ]//IEEE Com- puter Society Conference on Computer Vision and Pat- tern Recognition Workshops. Miami, FL, USA, 2009 : 983 - 990.
  • 4Kalal Z, Matas J, Mikolajczyk K. P-N learning: boot- strapping binary classifiers by structural constraints [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA, 2010 : 49 - 56.
  • 5Kalal Z, Matas J, Mikolajczyk K. Online learning of robust object detectors during unstable tracking [ C ]// IEEE 12th International Conference on Computer Vision Workshops. Kyoto, Japan, 2009: 1417- 1424.
  • 6Kalal Z, Matas J, Mikolajczyk K. Face-TLD: tracking- learning-detection applied to faces [ C ]//International Conference on Image Processing. Hong Kong, China, 2010: 3789 - 3792.
  • 7Huber D, Kapuria A, Donamukkala R, et al. Parts based 3D object classification [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA, 2004:82 - 89.
  • 8Osada R, Funkhouser T, Chazelle B, et al. Matching 3 D models with shape distributions [ C ]//Shape Model- ing Int. Genova, Italy, 2001:154 - 166.
  • 9Otsu N. A threshold selection gray-level histogram [J]. IEEE Transactions on Systems, Man and Cyber- netics, 1979, 9(1) :62-66.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部