期刊文献+

分数阶PI^λD^μ控制器的一种状态空间实现

A State-Space Realization of Fractional Order PI^λD^μ Controller
下载PDF
导出
摘要 首先回顾了分数阶微积分、分数阶系统和分数阶PI^λD^μ控制器的数学描述,对于一类分数阶SISO被控对象,提出了一种基于整数阶微分算子的分数阶PI^λD^μ控制器的S平面状态空间实现。同时,在Matlab Simulink仿真平台实现了基于Oustaloup连续滤波器法的分数阶微分算子和该状态空间实现,并基于遗传算法整定了状态空间参数。仿真结果验证了该状态空间的有效性与正确性。 This paper outlines the mathematical descriptions of fractional calculus, fractional regulated systems and fractional order PI^λD^μ controller. For a class of fractional order SISO regulated system, the paper also puts forward a state space description of fractional order PI^λD^μ controller on s-plane based on the integer-order derivative integrator. Meanwhile, it realizes the Oustaloup fractional derivative integrator and the presented state space on the Maltab Simulink platform, finally tunes the parameters of fractional order PieD'controller based on Genetic Algorithm. The simulation results verify the correctness and effectiveness of the presented state space.
作者 陈家义 CHEN Jiayi (Beihai Vocational College, Beihai Guangxi 536000, China)
机构地区 北海职业学院
出处 《智能计算机与应用》 2011年第2X期73-75,85,共4页 Intelligent Computer and Applications
关键词 分数阶微积分 分数阶PI^ΛD^Μ控制器 状态空间 Fractional Calculus Fractional Order PI^λD^μ Controller State-space
  • 相关文献

参考文献6

  • 1薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776. 被引量:163
  • 2王琛,王仕成.基于遗传算法的P ID参数整定及仿真[J].计算机仿真,2005,22(10):112-114. 被引量:18
  • 3PETRAS I.The fractional-order controllers:methods for their s-ynthesis and application. Journal of Electrical Engineering . 199-9
  • 4Oustaloup A,Levron F,Mathieu B,et al.Frequency-band complexnoninteger differentiator:characterization and synthesis. IEEETransactions on Circuit and Systems-I:Fundamental Theory andApplications . 2000
  • 5PODLUBNY I,DORCAK L,KOSTIAL I.On fractional derivatives,fractional-order dynamic systems and-controllers. Proceeding ofthe 36th Conference on Decision&Control . 1997
  • 6OUSTALOUP A,MATHIEU B.La commande CRONE:Du Scalaire Au Multivariable. . 1999

二级参考文献12

  • 1陶永华 尹怡欣 葛芦生.新型PID控制及其应用[M].北京:机械工业出版社,2003..
  • 2[美]F G SHINSKEY. Feedback Controllers for the Process Industries[M]. McGraw-Hill,Inc.,1994.
  • 3RICBARD L. Magin. Fractional calculus in bioengineering[J]. Critical Reviews in Biomedical Engineering, 2004, 32(1): 1 - 193.
  • 4PODLUBNY I. Fractional-order systems and PI^λD^μ-controllers[J]. IEEE Trans on Automatic Control, 1999, 44(1): 208 -214.
  • 5LV Z F. Time-domain simulation and design of siso feedback control systems[D]. Taiwan: National Cheng kung University, 2004.
  • 6CAPONTTO R, FORTUNA L, PORTO D. A new tuning strategy for a non integer order pid controller[C]//IFAC2004, Bordeaux, France: [s.n.], 2004.
  • 7MONJE C A, VINAGRE B M, CHEN Y Q, et al. Proposals for fractional PI^λD^μ tuning[C]//The First IFAC Symposium on Fractional. Bordeaux, France: [s.n], 2004.
  • 8MAC B, HORI Y. Design of fractional order pid controller for robust two-inertia speed control to torque saturation and load inertia variation[C]//IPEMC. Xi'an, China: [s.n.], 2003.
  • 9XUE D Y, CHEN Y Q. A comparative introduction of four fractional order controllers[C]//Proc of the 4th World Congress on Intelligent Control and Automation. Piscataway, NJ, USA: IEEE Press, 2002: 3228 - 3235.
  • 10PODLUBNY I. The Laplace transform method for linear differential equations of the fractional order[J]. Fractional calculus Applied Analysis, 1997: 365- 386.

共引文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部