摘要
本文用乙二胺与水杨醛衍生物在非水相中合成了一种新的双希夫碱配体,并通过元素分析、核磁、质谱和红外等方法进行了表征。采用Gaussian03在DFT/B3LYP水平下进行理论研究。计算出分子总能量TE、分子最高占据轨道能Ehomo、分子最低空轨道能Ehomo、标准焓H^。、标准自由能G^。、恒容热熔Cv^。、标准熵S^。、零点能扇、分子偶极矩队前线轨道能量差△E等热力学参数。优化了几何构型模拟出分子的部分重要键长(A)、键角(。)、二面角(。)等结构参数。经过Mulliken布居分析得到了原子的净电荷分布。计算出原子轨道对前线分子轨道的贡献(%)。通过对热力学参数、结构参数、原子净电荷布局和原子轨道对前线分子轨道贡献的总体探讨,表明目标分子具有较好的空间结构和较强的配位能力,是一个良好的配体:并且,它的生物活性很强,可以进一步进行抑菌性能和抗氧化性能等研究并且应用到各个领域。
A new ligand on double schiffbase was synthesized with diamine and Salicylaldehyde derivative in non-aqueous phase,and was characterized by elemental analysis, NMR, MS, and FTIR spectra and so on. Quantum chemistry calculations were performed by using Ganssian 03 program at DFT/B3LYP basis set. Thermodynamic parameters of total molecular energy TE, the highest occupied molecular orbital energy Ehomo, the lowest unoccupied molecular orbital energy ELUMO, standard enthalpy H^o, standard free energy G~, constant temperature hot melt Cv~, standard entropy S^o, Zero-point energy E0, molecular dipole μ, the difference between the frontier molecular orbital energy △E were obtained. After optimization of molecular geometry, structural parameters of some important bond lengths (A), bond angle(o), dihedral angle(o) were obtained. The charge distribution of atoms of L was obtained by Mulliken population analysis. Atomic orbitals contribution to some frontier molecular orbitals of L (%) were calculated. General discussion of thermodynamic parameters structural parameters, the charge distribution of atoms atomic orbitals contribution to some frontier molecular orbitals,indicated the title molecule have better space structure and better strong coordination ability, was a good ligand. And, it have very strong biological activity, will be allowed to apply to antibacterial property and antioxidant property in all fields, this is consistent with the prior forecast.
出处
《计算机与应用化学》
CAS
CSCD
北大核心
2011年第9期1215-1218,共4页
Computers and Applied Chemistry
基金
广西科学研究与技术开发计划项目(桂科能0842003-38)
广西教育厅科研项目(067003)
关键词
希夫碱
合成
量子化学计算
schiff base, synthesize, quantum chemistry calculation