摘要
研究具有变时滞r(t)的非线性随机积分-微分方程dx(t)=-∫(t-r(t))ta(t,s)f(x(s)))dsdt+g(t,x(t))dB(t),t≥0的解的稳定性问题,其中在x=0的某邻域内满足xg(,x)>0(x≠0).不仅使用不动点定理给出了方程解的均方渐近稳定的充分必要条件,同时给出了一个例子说明了主要结果.
In this paper, the authors investigate the solution stability issues concerning nonlinear stochastic integral-differential equations given as dx(t)=-(∫t-r(t)a(t,s)f(x(s)))dsdt+g(t,x(t))dB(t),t≥0 with variable delay r(t), where xg(.,x) 〉 0(x ≠0) in a neighborhood of x = 0. Using the fixed point theorem, the sufficient and necessary conditions are given to ensure the solution of stochastic integral-differential equation to be mean square asymptotically stable. Meanwhile, one example is offered to help explain the obtained results.
出处
《宁波大学学报(理工版)》
CAS
2011年第4期36-40,共5页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
宁波市自然科学基金(2010A610100)
宁波大学学科项目(xkl11044)
宁波大学研究生科研创新基金(G11JA010)
关键词
随机积分-微分方程
不动点定理
均方
渐近稳定
变时滞
Stochastic integral-differential equation
fixed point theory
mean square
asymptotically stable
variable delay