期刊文献+

一类随机积分微分方程解的稳定性

Solution Stability for a Class of Integral-differential Equations
下载PDF
导出
摘要 研究具有变时滞r(t)的非线性随机积分-微分方程dx(t)=-∫(t-r(t))ta(t,s)f(x(s)))dsdt+g(t,x(t))dB(t),t≥0的解的稳定性问题,其中在x=0的某邻域内满足xg(,x)>0(x≠0).不仅使用不动点定理给出了方程解的均方渐近稳定的充分必要条件,同时给出了一个例子说明了主要结果. In this paper, the authors investigate the solution stability issues concerning nonlinear stochastic integral-differential equations given as dx(t)=-(∫t-r(t)a(t,s)f(x(s)))dsdt+g(t,x(t))dB(t),t≥0 with variable delay r(t), where xg(.,x) 〉 0(x ≠0) in a neighborhood of x = 0. Using the fixed point theorem, the sufficient and necessary conditions are given to ensure the solution of stochastic integral-differential equation to be mean square asymptotically stable. Meanwhile, one example is offered to help explain the obtained results.
作者 陈丽 胡良根
机构地区 宁波大学理学院
出处 《宁波大学学报(理工版)》 CAS 2011年第4期36-40,共5页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 宁波市自然科学基金(2010A610100) 宁波大学学科项目(xkl11044) 宁波大学研究生科研创新基金(G11JA010)
关键词 随机积分-微分方程 不动点定理 均方 渐近稳定 变时滞 Stochastic integral-differential equation fixed point theory mean square asymptotically stable variable delay
  • 相关文献

参考文献13

  • 1Mao xuerong. Stability of Stochastic differential equa- tions with respect to semimartingales[M]. New York: Longman Scientific and Technical, 1991.
  • 2Mao xuerong. Exponential stability of stochastic diffe- rential equations[M]. New York: Marcle Dekker, 1994.
  • 3Mao xuerong. Stochastic differential equations and appli- cations[M]. New York: Horwood, 1997.
  • 4Burton T A. Stability by fixed point theory or Liapunov's theory[J]. A comparison, Fixed Point Theory, 2003(4): 15-32.
  • 5Burton T A, Furumochi T, A note on stability by Schau- der's theorem[J]. Funkcialaj Ekvacioj, 2001, 44:73-82.
  • 6Furumochi T. Asymtotic behavior of solutions of some functional diffemtial equations by Schauder's theorem[J]. Electron J Qual Theory Differ Equ, 2004, 10:1-11.
  • 7Furumochi T. Stability in FDSs by Schauder's theorem [J]. Nonlinear Anal, 2005, 27:217-224.
  • 8Raffoul Y N. Stability in neutral nonlinear differential equations with functional delays using fixed-point theory [J]. Math Comput Modelling, 2004, 40:691-700.
  • 9Zhang Bo. Fixed points and stability in differential equations with variable delays[J]. Nonlinear Anal, 2005 (3):233-242.
  • 10Volterra V. Sur la theorie mathematique des phenomenes hereditaires[J]. J Math Pures Appl, 1928, 7(9):249-298.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部