期刊文献+

考虑大宗交易的均值-方差投资组合优化模型及其分支定界算法 被引量:3

Portfolio optimization model and branch-bound algorithm under block trading
原文传递
导出
摘要 由于大宗交易下边际交易费用递减,因此用线性加凹的函数拟合实际交易费用函数,建立了均值-方差框架下的组合优化模型并给出了相应的求解算法.通过对恒生指数样本股的实证分析发现:考虑大宗交易的组合有效边缘介于线性交易费用和无交易费用的组合有效边缘之间;大宗交易稀释了"分散化降低风险"的效应;大宗交易下交易费用越大,相对于线性交易费用而言组合集中度越高. In this paper,we consider the portfolio optimal problem under block trading.As the decrease of marginal transaction cost under block trading,we establish the mean-variance portfolio optimization model and the corresponding algorithm by means of fit transaction cost function with linear and concave form.Computational results are presented by considering the stocks involved in Hang Seng Index to show that:The efficient frontier under block trading is between that with linear transaction cost and without transaction cost;The investment risk can be eliminated by portfolio diversification,but the effect of that is dilute under block trading;In terms of linear transaction cost,the greater the transaction cost under block trading,the higher the portfolio concentration.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2011年第9期1617-1627,共11页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71171158) 教育部新世纪优秀人才支持计划项目(NCET-10-0646) 教育部人文社会科学研究项目基金(09XJAZH005 10YJCZH043)
关键词 大宗交易 线性加凹交易费用 组合规模 分散化效应 分枝定界算法 block trading linear and concave transaction cost portfolio size diversification effect branch-bound algorithm
  • 相关文献

参考文献17

  • 1Markowitz H. Portfolio selection[J]. Journal of Finance, 1952(1): 77-91.
  • 2Best M J, Kale J K. Quadratic Programming for Large Scale Portfolio Optimization[M]//Jessica Keyes. Financial Services Information Systems, CRC Press: Boca Raton, 2000.
  • 3Best M J, Hlouskova J. Portfolio selection and transaction costs[J]. Computational Optimization and Application, 2003(24): 95 116.
  • 4Lobo M S, Fazel M, Boyd S. Portfolio optimization with linear and fixed transaction costs[J]. Annals of Operations Research, 2007(152): 341-365.
  • 5Schattman J B. Portfolio selection under nonconvex transaction cost and capital gains taxes[D]. Rugters Center for Operations Research, Rugters University, USA, 2000.
  • 6Li D,'Sun X L, Wang J. Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection[J]. Mathematical Finance, 2006(16): 83-101.
  • 7Evans J L, Archer S H. Diversification anct the reduction of dispersion: An empirical analysis[J]. Journal of Finance, 1968(23): 761 767.
  • 8Fisher L, Lorie J H. Some studies of variability of returns on investments in common stocks[J]. Journal of Business, 1970(43): 90-134.
  • 9Statman M. How many stocks make a diversified portfolio?[J]. Journal of Financial and Quantitative Analysis, 1987(22): 353-363.
  • 10Tang G Y N. How efficient is naive portfolio diversification? An educational note[J]. Omega -- The International Journal of Management Science, 2004(32): 155-160.

二级参考文献7

  • 1施东晖.上海股票市场风险性实证研究[J].经济研究,1996,31(10):44-48. 被引量:195
  • 2Kim H K. Risk, return, and equilibrium in the emerging market: Evidence from the Korean stock market[J]. Journal of Economics and Business, 1991, 43(4): 353 - 352.
  • 3Bodie Z, Kane A. Investment[M]. 5th edition, The McGraw-Hill Companies,Inc, 2002.
  • 4Markowitz H.Portfolio selection[J].Journal of Finance,1952,7(1):77-91.
  • 5Evans J F, Arch S H. Diversification and the reduction of dispersion: An empirical analysis[ J ]. Journal of Finance, 1968, 23 (5):761 - 767.
  • 6Johnson K H, Shannon D S. A note on diversification and the reduction of dispersion[ J]. Journal of Financial Economics, 1974, 4:365 - 372.
  • 7吴世农,韦绍永.上海股市投资组合规模和风险关系的实证研究[J].经济研究,1998(4):21-29. 被引量:82

共引文献250

同被引文献36

  • 1Li Chen,Lipei Zhang,Jun Huang,Helu Xiao,Zhongbao Zhou.Social responsibility portfolio optimization incorporating ESG criteria[J].Journal of Management Science and Engineering,2021,6(1):75-85. 被引量:4
  • 2刘亚旭,汪应洛.具有不对称风险交互效应的R&D项目组合选择方法[J].系统工程,2007,25(2):18-21. 被引量:20
  • 3Li D,Ng W L. Optimal dynamic portfolio selection:Multiperiod mean-variance formulation[J].Math Financ,2000.387-406.
  • 4Cakmak U,Ozekicis S. Portfolio optimization in stochastic markets[J].Math Meth Oper Res,2006.151-168.
  • 5Celikyurt U,Ozekicis S. Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach[J].{H}European Journal of Operational Research,2007.186-202.
  • 6Xie S X,Li Z,Wang S Y. Continuous-time portfolio selection with liability:Mean-variance model and stochastic LQ approach[J].{H}Insurance:Mathematics and Economics,2008,(03):943-953.
  • 7Chen P,Yang H L,George Y. Markowitz's mean-variance asset-liability management with regime switching:A continuous-time model[J].{H}Insurance:Mathematics and Economics,2008,(03):456-465.
  • 8Xie S X. Continuous-time mean-variance portfolio selection with liability and regime switching[J].{H}Insurance:Mathematics and Economics,2009.148-155.
  • 9Sun W G,Wang C F. The mean-variance investment problem in a constrained financial market[J].{H}JOURNAL OF MATHEMATICAL ECONOMICS,2006.885-895.
  • 10Li X,Zhou X Y,Lim A E B. Dynamic mean-variance portfolio selection with no-shorting constraints[J].SIAMJ Control and Optimization,2001.1540-1555.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部