期刊文献+

基于人工神经网络的低碳贝氏体钢回火组织预测 被引量:5

Prediction of Tempering Microstructure of Low-carbon Bainite Steel Based on BP Artificial Neural Network
下载PDF
导出
摘要 低碳贝氏体钢经控轧控冷后,在不同温度下进行回火处理,获得了不同冷却速度、终冷温度和回火温度下的贝氏体室温组织。结合实验数据和神经网络知识,建立了具有BP算法的人工神经网络,训练结束后的神经网络即成为低碳贝氏体钢回火组织预测模型。误差分析表明,该神经网络模型具有较高的精度,可用于指导低碳贝氏体钢热加工工艺的制定。 The microstructure of low-carbon bainite steel at room temperature was obtained through controlled rolling and cooling and tempering treatment.After analyzing the experimental data of the bainite grain size under different conditions of cooling speed,final cooling temperature and tempering temperature,an artificial neural network with back propagation(BP) algorithm was established and models for predicting the tempering microstructure of low-carbon bainite steel were developed after training.Error analysis shows that the artificial neural network model for bainite microstructure has higher precision,and it can be used for guiding the hot working process of low-carbon bainite steel.
出处 《热加工工艺》 CSCD 北大核心 2011年第18期24-26,共3页 Hot Working Technology
基金 国家自然科学基金资助项目(50964012) 江西省自然科学基金资助项目(2008GZC0040)
关键词 贝氏体钢 回火组织 人工神经网络 BP算法 bainite steel tempering microstructure artificial neural network BP algorithm
  • 相关文献

参考文献6

二级参考文献59

共引文献96

同被引文献31

  • 1尚成嘉,杨善武,王学敏,侯华兴,于功利,王文仲.低碳贝氏体钢的组织类型及其对性能的影响[J].钢铁,2005,40(4):57-61. 被引量:70
  • 2聂燚,董文龙,赵运堂,尚成嘉,侯华兴,贺信莱.高强度低碳贝氏体钢工艺和组织对性能的影响[J].北京科技大学学报,2006,28(8):733-738. 被引量:31
  • 3陈忠伟,张玉柱,杨林浩.低碳贝氏体钢的研究现状与发展前景[J].材料导报,2006,20(10):84-86. 被引量:47
  • 4Cheng W J, Wang C J. Microstructural Evolution of Inter- metallic Layer in Hot-Dipped Aluminide Mild Steel with Silicon Addition [ J ]. Surface and Coatings Technology, 2011,205(19) :4 726 -4 731.
  • 5Sun Y, Zeng W D, Zhao Y Q, et al. Constructing pro- cessing map of Ti40 alloy using artificial neural network [J]. Trans Nonferrous Met Soc, 2011,21 (1):159 - 165.
  • 6Danzo I I, Verbeken K, Houbaert Y. Microstructure of hot dip coated Fe - Si steels [ J ]. Thin Solid Films, 2011, 520(5) :1 638 - 1 644.
  • 7Wun H K, Bartels K A. Magnetosricfive sensor technology and its applications[J]. Ultrasonics, 1997,36(5): 171-178.
  • 8Dapino M J. Structural magnetic strain model for magnetostric-rive transducers[J]. IEEE Transactions on Magnetics,2000,36(3): 545-556.
  • 9Zhang L C, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy [J]. Scripta Materialia,2011,65:21-24.
  • 10王伟,宓一鸣,钱士强,周细应.稀土超磁致伸缩薄膜的研究进展[J].热加工工艺,2007,36(24):81-85. 被引量:1

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部