期刊文献+

基于YCbCr颜色空间的火焰图像分割方法 被引量:18

Flame image segmentation method based on YCbCr color space
下载PDF
导出
摘要 视频火焰检测对消防安全具有重要的实际意义。火焰颜色信息在视频火灾检测中起着举足轻重的作用,众多学者提出了基于不同颜色空间的多种火焰颜色检测算法。针对目前视频火焰颜色检测算法检测率低、误检率高、适应性差等不足,提出基于颜色空间的火焰图像分割方法。通过研究火焰图像在颜色空间上的分布情况,分析火焰像素对应的Y,Cb和Cr分量的关系,总结出火焰像素的约束条件。在不同场景下进行火焰目标提取,通过与文献中其他三种方法比较表明提出的方法检测率高、误报率低,并具有较好的适应性。 Video fire detection has important practical significance for fire safety. The flame color information plays an important role in video file detection,and many scholars have presented a variety of flame color detection algorithms based on different color space. Aimed at low detection rate, high false-alarm rate and poor adaptability in current flame color detection algorithm, a flame color segmentation method based on YCbCr color space is proposed. The constraints of the flame pixels is summed up by studying the distribution of the flame in YCbCr color space and the relationship between the Y, Cb and Cr components of flame pixels. The performance of the proposed method is tested under different scenarios ,the results are compared with three other methods in the literature and the proposed method is shown to have a higher detection rate,a lower false rate and better adaptability.
出处 《传感器与微系统》 CSCD 北大核心 2011年第10期62-64,共3页 Transducer and Microsystem Technologies
关键词 火焰识别 颜色检测 YCBCR颜色空间 图像分割 fire recognition color detection YCbCr color space image segmentation
  • 相关文献

参考文献10

  • 1Horng W B, Peng J W. Image-based fire detection using neural networks [ C ]//Proceedings of the Joint Conference on Information Sciences ( JCIS ), Kaohsiung, Taiwan ,2006.
  • 2Horng W B, Peng J W, Chen C Y. A new image-based real-time flame detection method using color analysis [ C ]//Procedings of IEEE Net working, Sensing and Control, Tucson, Arizona, USA, 2005 : 100 -105.
  • 3Chen T H, Wu P H, Chiou Y C. An early fire-detection method based on image processing [ C ]//Proceedings of IEEE Interna- tional Conference on hnage Processing, ICIP'04, Singapore, 2004 :1707 -1710.
  • 4Chcn T H,Kao C L, Chang S M. An intelligent real-time fire-de- tection method based on video processing[ C ]//The 37th 1EEE International Carnahan Conference on Security Technology, Taiwan ,2003 : 104 -111.
  • 5Huang P H,Su J Y,Lu Z M,et al. A fire-alarming method based on video processing [ C]//International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP' 06,2006:359 -364.
  • 6Lee B M, Han Dongil,Real-time fire detection using camera se- quence image in tunnel environment[ C ]//Proeeedings of ICIC, 2007 : 1209 -1220.
  • 7Chen Juan, He Yaping, Wang Jian. Multi-feature fusion based fast video flame detection [J].Building and Environment,2010,4,5: 1113 -1122.
  • 8Celik T, Demirel H, Ozkaramanli H. Automatic fire detection in video sequences[ Cl//Proceedings of European Signal Processing Conference, EUSIPCO 2006, Florence, Italy ,2006:9.
  • 9Poyuton C A. A Technical Introduction to Digital Video[ M]. New York : Wiley, 1996.
  • 10Celik T, Demirel H, Ozkaramanli H, et al. Fire detection using statistical color model in video sequences [J]. Journal of Visual Communication &Image Representation,2007,18:176 -185.

同被引文献118

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2邹定海,叶声华,王春和,郭育.用于在线测量的视觉检测系统[J].仪器仪表学报,1995,16(4):337-341. 被引量:35
  • 3孙鑫红,谢永芳,桂卫华,宋海鹰.铜转炉吹炼终点预报模型研究[J].计算机应用研究,2007,24(11):60-62. 被引量:2
  • 4Gomez-Rodriguez F, Arrue B C, Ollero Robotics A. Smoke moni- toring and measurement using image processing, application to forest fires [ C ]//Proceedings of Automatic Target Recognition XI- II, SPIE, Orlando, FL, USA ,2003:404 -- 411.
  • 5Celik T,Demirel H,Ozkaramanli H,et al. Fire detection in video sequences using statistical color model [ C ]///International Confe- rence on Acoustics, Speech, and Signal Processing, 200fi : 213 -- 216.
  • 6Chen T,Wu P,Chiou Y. An early fire-detection method based on image processing[ C ]//Proceeding of IEEE International Confe- rence on Image Processing,2004:1707--1710.
  • 7Tfireyin B Ugur, Yigithan Dedeoglu, Cetin A Enis. Wavelet-based real time smoke detection in video [ C ]//Proceeding of the 13th European Signal Processing Conference, Antalya, Turkey, 2005: 4--8.
  • 8Barnich O, Van Droogenbroeck M. ViBe: A powerful random technique to estimate the background in video sequences [ C ]// Proceedings of+ ICASSP 2009, Taipei : IEEE Computer Society, . , 2009:945 --948.
  • 9Barnich O, Van Droogenbroeck M. ViBe:.An universal hack- ground subtraction algorithm for video sequences [ J ]. IEEE Transactions on Image Processing,2011,20(6) :1709--1724.
  • 10Turgay Gelik, Hiiseyin 0zkaramanl,Hasan Demirel. Fire and smoke detection without sensors : Image processing-based approach [ C ]//15th European Signal Processing Conference, EU- SIPCO 2007, Poznan, Poland ,2007:3 --7.

引证文献18

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部