期刊文献+

正的Dunford-Pettis算子的L-和M-弱紧性(英文)

L-and M-weak Compactness of Positive Dunford-Pettis Operators
下载PDF
导出
摘要 首先给出了Banach格上正的Dunford-Pettis算子是L-弱紧算子的充分必要条件,且给出了有限维的Banach格的另一个刻画,其次给出了Banach格上正的Dunford-Pettis算子是M-弱紧算子的必要条件,最后给出了Banach格上正的M-弱紧算子是Dunford-Pettis算子的充分条件. We present some necessary and sufficient conditions for positive Dunford-Pettis operators being L-weakly compact.We also give a necessary condition under which each positive Dunford-Pettis operator is M-weakly compact.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期632-634,共3页 Journal of Sichuan Normal University(Natural Science)
基金 supported by the National Natural Science Foundation of China(60674057)~~
关键词 Dunford-Pettis算子 L-弱紧算子 M-弱紧算子 M-weakly compact operator L-weakly compact operator Dunford-Pettis operator
  • 相关文献

参考文献10

  • 1Aquzzouz B, Nouria R, Hmichane J. Some properties of the class of positive Dunford-Pettis operator[ J ]. J Math Anal Appl, 2009,354:295 - 300.
  • 2Aliprantis C D, Burkinshaw O. Positive Operators[ M]. New York:Academic Press,1985.
  • 3Meyer-Nieberg P. Banach Lattices [ M ]. Berlin : Springer-Verlag, 1991.
  • 4Wickstead A W. Converses for tile Dodds-Fremin and Kalton-Saab theorems [ J ]. Math Proc Camb Phil Soc,1996,120:175 -179.
  • 5Aquzzouz B, Nouria R, Zraoula L .About positive Dunford-Pettis operators on Banach lattices[J]. J Math Anal Appl,2006,324:49-59.
  • 6Aquzzouz B, Nouria R, Zraoula L. Senti-compactness of positive Dunford-Pcttis operators on Banach lattices[ J]. Proceedings of the American Mathematical Society,2008, 136 ( 6 ) : 1997 - 2006.
  • 7Aquzzouz B, Elbour A. Some characterizations of compact operators on Banach lattices[ J ]. Rendiconti del Cireolo Matematieo di Palermo,2008,57:423 - 431.
  • 8Aquzzouz B, Zraoula L. AM-compactness of positive Dunford-Pettis operators on Banach lattices [ J ]. Rendiconti del Circolo Matematico di Palermo,2007,2:305 - 316.
  • 9Chen Z L. Domination properties of lattice homomorphisms [ J]. Positivity,2009,13 (1) :51 -60.
  • 10Chen Z L, Wickstead A W. L-weakly and M-wealdy compact operators[J]. Indagationes Mathematicae,1999,10(3) :321 -336.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部