期刊文献+

格值命题逻辑系统Ln×2P(X)中广义文字的α-归结性

α-Resolution Fields of Generalized Literals in Lattice-valued Propositional Logic L_(n×2)P(X)
下载PDF
导出
摘要 归结自动推理是人工智能领域的一个重要研究方向.以格蕴涵代数为真值域的格值逻辑中的α-归结方法提供了一种处理带有模糊性和不可比较性信息的自动推理问题的工具,能对格值逻辑系统的α-不可满足子句集给出反驳证明,用α-归结原理证明格值逻辑中广义子句集的α-不可满足性,必须首先研究两个广义文字是否可以进行α-归结.研究了格值逻辑中一阶不可分极简式1-IESF和其他一些广义文字的α-归结性,得到了两个广义文字可进行α-归结的条件,以期能对基于格值逻辑的归结自动推理提供一些必要的理论支持. Resolution based automatic reasoning is one of most important research directions in AI.α-resolution method on lattice-valued logic based on lattice implication algebra provides alternative tool to handle the automatic reasoning problem with incomparability and fuzziness of information.It can refutably prove the α-unsatisfiability of clause set in lattice-valued logic system.We need to judge whether or not two generalized literals can form α-resolution pairs when we use α-resolution principle to refutably prove the α-unsatisfiability of a clausal set in Ln×2P(X).This paper discusses the resolvent of 1-IESF and other generalized literals and gets some determinations for α-resolution of two generalized literals.
作者 张家锋 徐扬
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期635-639,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(60875034) 贵州省科技厅科学技术项目基金(2009GZ43286)资助项目
关键词 自动推理 归结域 格值逻辑 格蕴涵代数 automatic reasoning resolution field lattice-valued logic lattice implication algebra
  • 相关文献

参考文献16

  • 1Robinson J P. A machine- oriented logic based on the resolution principle[ J]. J ACM, 1965,12:23 -41.
  • 2Slagle J R. Automatic theorem proving with renamable and semantic resolution[ J]. J ACM, 1967,14(4) :687 - 697.
  • 3Loveland D W. A linear fomlat for resolution [ C ]//Proc IRIA Syrup Automatic Demonstration. New York:Spring -Verlag, 1970: 147 - 162.
  • 4Xu Y, Ruan D, Kerre E E, et al.α -Resolution principle based on lattice -valued propositional logic LP(X) [J]. Information Sciences ,2000,130 : 195 - 222.
  • 5Xu Y, Ruan D, Kerre E E, et al. α- Resolution principle based on first - order lattice - valued Iogic LF(X) [J]. Information Sciences ,2001,132:221 - 239.
  • 6王伟.格值命题逻辑系统LP(X)中基于α-归结原理的自动推理方法研究[D].成都:西南交通大学,2002.
  • 7李晓冰.基于语言真值格值逻辑的归结自动推理研究[D].成都:西南交通大学,2008.
  • 8周平,姜明,孙西芃.格值一阶逻辑系统LF(X)中带广义量词的α-归结原理[J].模糊系统与数学,2008,22(5):10-15. 被引量:6
  • 9夏世芬,秦应兵,徐扬.格值命题逻辑系统中基于滤子的MP归结演绎[J].模糊系统与数学,2009,23(1):1-5. 被引量:8
  • 10李晓冰,邱小平,徐扬.格值命题逻辑系统L_(2n+1)P(X)中基于半正则广义文字的自动推理算法[J].模糊系统与数学,2009,23(4):21-26. 被引量:8

二级参考文献21

  • 1Qin Keyun,Xu Yang( Dept. of Appl. Mathematics, Southwest Jiaotong University)Chengdu 610031,China.Lattice-Valued Proposition Logic(Ⅱ)[J].Journal of Modern Transportation,1994,11(1):22-27. 被引量:13
  • 2王伟,徐扬,王学芳.α-Automated Reasoning Method Based on Lattice-Valued Propositional Logic LP(X)[J].Journal of Southwest Jiaotong University(English Edition),2002,10(1):98-111. 被引量:4
  • 3周平,姜明,徐扬.格值一阶逻辑系统LF(X)中的广义量词[J].模糊系统与数学,2006,20(5):96-100. 被引量:4
  • 4周平,姜明,徐扬.格值一阶逻辑系统LF(X)中带广义量词的不确定性推理[J].模糊系统与数学,2007,21(2):40-45. 被引量:3
  • 5邱小平.关于办公信息系统智能化的研究[D].成都:西南交通大学,2004.
  • 6Qin K Y. Lattice-valued propositional logic(Ⅰ)[J]. Journal of Southwest Jiaotong University, 1993,2:123-128.
  • 7Xu Y,Liu J,Song Z M,Qin K Y. On semantics of L-valued first-order logic Lvn[J]. International Journal of General Systems, 2000,29(1) :53-79.
  • 8Xu Y, Ruan D, Kerre E E, Liu J. a-resolution principle based on lattice-valued propositional logic LP(Ⅹ)[J]. Int. J. Information Sciences, 2000,130 : 195 - 223.
  • 9Xu Y, Ruan D, Kerre E E, Liu J. a-resolution principle based on first-order lattice-valued logic LF(Ⅹ)[J]. Int. J. Information Sciences, 2001,132 : 221- 239.
  • 10Ma J. Uncertainty reasoning on filter of lattice implication algebra[A]. Proceedings of the second International Conference on Machine Learning and Cybernetics[C]. Xi'an,2003 : 2-5.

共引文献317

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部